3x - 5 1/2 is the expression
First, 9.8 (Gravity) times 3 (time) equals 29.4, which is the velocity after 3 seconds. The kinematic equation for change in position that uses the variables we have is:
delta x= (v)(t) -0.5(acceleration)(time)^2
delta x= 29.4 times (3) - 0.5 (9.8) times 9
delta x= 44.1
100 minus 44.1 equals 55.9, which is the answer for part a.
Tell me if you need any clarification
PART B:
The kinematic equation for this is:
delta x= (initial velocity) times time plus 0.5 (a)(time)^2
100=(0)times(x) plus 0.5 (a)(time)^2
100=0.5(9.8)(x)^2
100=4.9x^2
100/4.9 is approxamitely 20.4.
The squareroot of this is approxamitely 4.5.
4.5 seconds
Tell me if you need any clarification
◆ Define the variables:
Let the calorie content of Candy A = a
and the calorie content of Candy B = b
◆ Form the equations:
One bar of candy A and two bars of candy B have 774 calories. Thus:
a + 2b = 774
Two bars of candy A and one bar of candy B contains 786 calories
2a + b = 786
◆ Solve the equations:
From first equation,
a + 2b = 774
=> a = 774 - 2b
Put a in second equation
2×(774-2b) + b = 786
=> 2×774 - 2×2b + b = 786
=> 1548 - 4b + b = 786
=> -3b = 786 - 1548
=> -3b = -762
=> b = -762/(-3) = 254 calorie
◆ Find caloric content:
Caloric content of candy B = 254 calorie
Caloric content of candy A = a = 774 - 2b = 774 - 2×254 = 774 - 508 = 266 calorie
3.9*10 = 39 then that to the 20 power is 6.626621133E31
Hope this helps!