At first, we will find the lengths of LK, Lm, ON, OP, then use them to find the ratios between them
The rule of the distance is
![d=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}](https://tex.z-dn.net/?f=d%3D%5Csqrt%7B%28x_2-x_1%29%5E2%2B%28y_2-y_1%29%5E2%7D)
For LK
Since L = (3, 6), K = (1,5.33), then
![\begin{gathered} LK=\sqrt{(3-1)^2+(6-5.33)^2} \\ LK=\sqrt{4+0.4489} \\ LK=\sqrt{4.4489} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20LK%3D%5Csqrt%7B%283-1%29%5E2%2B%286-5.33%29%5E2%7D%20%5C%5C%20LK%3D%5Csqrt%7B4%2B0.4489%7D%20%5C%5C%20LK%3D%5Csqrt%7B4.4489%7D%20%5Cend%7Bgathered%7D)
For LM
Since L = (3, 6), M = (5, 6.67), then
![\begin{gathered} LM=\sqrt{(3-5)^2+(6-6.67)^2} \\ LM=\sqrt{4+0.4489} \\ LM=\sqrt{4.4489} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20LM%3D%5Csqrt%7B%283-5%29%5E2%2B%286-6.67%29%5E2%7D%20%5C%5C%20LM%3D%5Csqrt%7B4%2B0.4489%7D%20%5C%5C%20LM%3D%5Csqrt%7B4.4489%7D%20%5Cend%7Bgathered%7D)
For ON
Since O = (3, 2.59) and N = (5, 4.2), then
![\begin{gathered} ON=\sqrt{(3-5)^2+(2.59-4.2)} \\ ON=\sqrt{4+2.5921} \\ ON=\sqrt{6.5921} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20ON%3D%5Csqrt%7B%283-5%29%5E2%2B%282.59-4.2%29%7D%20%5C%5C%20ON%3D%5Csqrt%7B4%2B2.5921%7D%20%5C%5C%20ON%3D%5Csqrt%7B6.5921%7D%20%5Cend%7Bgathered%7D)
For OP
Since O = (3, 2.59), P = (1, 0.99), then
![\begin{gathered} OP=\sqrt{(3-1)^2+(2.59-0.99)^2} \\ OP=\sqrt{4+2.56} \\ OP=\sqrt{6.56} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20OP%3D%5Csqrt%7B%283-1%29%5E2%2B%282.59-0.99%29%5E2%7D%20%5C%5C%20OP%3D%5Csqrt%7B4%2B2.56%7D%20%5C%5C%20OP%3D%5Csqrt%7B6.56%7D%20%5Cend%7Bgathered%7D)
Now let us find the ratios between them
![\begin{gathered} \frac{KL}{LM}=\frac{\sqrt{4.4489}}{\sqrt{4.4489}}=1 \\ \frac{PO}{ON}=\frac{\sqrt{6.56}}{\sqrt{6.5921}}=0.9975\approx1 \\ \frac{KL}{LM}=\frac{PO}{ON}=1 \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20%5Cfrac%7BKL%7D%7BLM%7D%3D%5Cfrac%7B%5Csqrt%7B4.4489%7D%7D%7B%5Csqrt%7B4.4489%7D%7D%3D1%20%5C%5C%20%5Cfrac%7BPO%7D%7BON%7D%3D%5Cfrac%7B%5Csqrt%7B6.56%7D%7D%7B%5Csqrt%7B6.5921%7D%7D%3D0.9975%5Capprox1%20%5C%5C%20%5Cfrac%7BKL%7D%7BLM%7D%3D%5Cfrac%7BPO%7D%7BON%7D%3D1%20%5Cend%7Bgathered%7D)
That means, Parallel lines intercept equal parts
By joining MP
We will have Triangle KPM
Since KL = LM ------- Proved using the distance formula
Since LQ // KP ------ Given
Then MQ = QP ------- Using the theorem down
The theorem
If a line is drawn from a midpoint of one side of a triangle parallel to the opposite side, then it will intersect the 3rd side in its midpoint (Q is the midpoint of MP)
Parallel lines intercept equal parts