Answer
• a) $90.50
,
• b) $29.29
,
• c) $73.63
,
• d) $107.37
Explanation
Given the data, we can calculate the mean and standard deviation using a software.
• a)
That software will use the following formula for the mean:
![\bar{x}=\frac{sum\text{ of all observations}}{total\text{ number of observations}}](https://tex.z-dn.net/?f=%5Cbar%7Bx%7D%3D%5Cfrac%7Bsum%5Ctext%7B%20of%20all%20observations%7D%7D%7Btotal%5Ctext%7B%20number%20of%20observations%7D%7D)
In our case, we have 20 observations, meaning:
![\bar{x}=\frac{95+120+40+...+90+70+100}{20}=90.5](https://tex.z-dn.net/?f=%5Cbar%7Bx%7D%3D%5Cfrac%7B95%2B120%2B40%2B...%2B90%2B70%2B100%7D%7B20%7D%3D90.5)
• b)
Similarly, for the standard deviation <em>s</em> the formula is:
![s=\sqrt{\frac{\sum_^(x-\bar{x})}{n-1}}](https://tex.z-dn.net/?f=s%3D%5Csqrt%7B%5Cfrac%7B%5Csum_%5E%28x-%5Cbar%7Bx%7D%29%7D%7Bn-1%7D%7D)
where x represents each observation.
Then, using the software we would get:
![s\approx29.29](https://tex.z-dn.net/?f=s%5Capprox29.29)
Finally, the confidence interval (CI) can be calculated using the following formula:
![CI=\bar{x}\pm Z\times\frac{s}{\sqrt{n}}](https://tex.z-dn.net/?f=CI%3D%5Cbar%7Bx%7D%5Cpm%20Z%5Ctimes%5Cfrac%7Bs%7D%7B%5Csqrt%7Bn%7D%7D)
Replacing the data we get:
![CI=90.5\pm2.5758\times\frac{29.29}{\sqrt{20}}\approx90.5\pm16.87](https://tex.z-dn.net/?f=CI%3D90.5%5Cpm2.5758%5Ctimes%5Cfrac%7B29.29%7D%7B%5Csqrt%7B20%7D%7D%5Capprox90.5%5Cpm16.87)
Meaning that the upper limit will be:
![90.5+16.87=107.37](https://tex.z-dn.net/?f=90.5%2B16.87%3D107.37)
While the lower will be: