<h2>1.</h2><h3>1)</h3>
Put the given values of p and q in the factored form equation.
... f(x) = (x -(-1))(x -(-2)) . . . . p and q values put in
... f(x) = (x +1)(x +2) . . . . . . .simplified
<h3>2)</h3>
Multiplying the factors, we have
... f(x) = x(x +2) + 1(x +2) = x² +2x +1x +2
... f(x) = x² +3x +2
<h2>2.</h2>
We want to factor x³ -x² -6x. We notice first of all that x is a factor of all terms. Thus we have
... = x(x² -x -6)
Now, we're looking for factors of -6 that add up to -1. Those are -3 and 2. Thus the factorization is ...
... = x(x -3)(x +2)
<h2>3.</h2>
We want a description of the structure and an equivalent expression for
... 64x⁹ -216
We note that 64, 216, and x⁹ are all cubes, so this expression is ...
... the difference of cubes.
It can be rewritten to
... = 8((2x³)³ -3³)
and so can be factored as
... = 8(2x³ -3)(4x⁶ +6x³ +9)
Answer: See explanation
Step-by-step explanation:
a. how old is Cheryl?
Cheryl's age = d + 5
b. how old is Brandon?
d + 5 + 2
= d + 7
c. what was the difference in their ages 5 years ago?
Cheryl age five years ago = d
Brandon's age five years ago = d + 2
Difference = d + 2 - d = 2 years
d. what is the sum of their ages now?
Cheryl's age = d + 5
Brandon age = d + 7
Sum = d + 5 + d + 7
= 2d + 12
e. what will the sum of their ages be two years from now?
Two years from now,
Cheryl's age = d + 5 + 2 = d + 7
Brandon age = d + 7 + 2 = d + 9
Sum = d + 7 + d + 9
= 2d + 16
f. what will the difference of their ages be two years from now
Two years from now,
Cheryl's age = d + 5 + 2 = d + 7
Brandon age = d + 7 + 2 = d + 9
Difference = Brandon age - Cheryl age
= (d + 9) - (d + 7)
= 2 years.
Answer: 9.6
Explanation: if 500% is 4800 we would need to divide 4800 by 500 to find 1%
4800/500= 9.6
Answer:
56
Step-by-step explanation:
Round: 24 is 20 and 34 is 30
20 + 30 = 50
now unrounded, it's easier.
24 + 32 = 56
because 4 + 2 = 6, we know to add on only a few more.
B = 18 because 18-5 is equal to 3 and 3x3 is equal to 9.