Answer : The value of
for the given reaction is, 0.36
Explanation :
Equilibrium constant : It is defined as the equilibrium constant. It is defined as the ratio of concentration of products to the concentration of reactants.
The equilibrium expression for the reaction is determined by multiplying the concentrations of products and divided by the concentrations of the reactants and each concentration is raised to the power that is equal to the coefficient in the balanced reaction.
As we know that the concentrations of pure solids and liquids are constant that is they do not change. Thus, they are not included in the equilibrium expression.
The given equilibrium reaction is,

The expression of
will be,
![K_c=\frac{[BrCl]^2}{[Br_2][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBrCl%5D%5E2%7D%7B%5BBr_2%5D%5BCl_2%5D%7D)
First we have to calculate the concentration of
.



Now we have to calculate the value of
for the given reaction.
![K_c=\frac{[BrCl]^2}{[Br_2][Cl_2]}](https://tex.z-dn.net/?f=K_c%3D%5Cfrac%7B%5BBrCl%5D%5E2%7D%7B%5BBr_2%5D%5BCl_2%5D%7D)


Therefore, the value of
for the given reaction is, 0.36
Answer:
B
Explanation:
I hope it helps you good luck
In photosynthesis, plants take in carbon dioxide and turn it into energy that comes out as oxygen.
The final molarity of HCl is 2.284 M
We'll begin by listing what was given from the question. This is shown below:
Initial volume (V₁) = 5.56 mL
Initial Molarity (M₁) = 4.108 M
Final volume (V₂) = 5.56 + 4.44 = 10 mL
<h3>Final Molarity (M₂) =? </h3>
The final molarity of the HCl solution can be obtained by using the dilution formula as illustrated below:
<h3>M₁V₁ = M₂V₂</h3>
4.108 × 5.56 = M₂ × 10
22.84048 = M₂ × 10
Divide both side by 10
M₂ = 22.84048 / 10
<h3>M₂ = 2.284 M</h3>
Therefore, final molarity of the HCl solution is 2.284 M.
Learn more: brainly.com/question/6103588