1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Iteru [2.4K]
1 year ago
13

7th grade students were asked to choose their

Mathematics
1 answer:
nignag [31]1 year ago
4 0

Answer:

Step-by-step explanation:

You might be interested in
Write Algebraic Expressions
Anna71 [15]
X-9=Tony Her amount minus the nine fewer dollars is his amount.
6 0
4 years ago
Need help please its Calculus. Ill give the 5 stars as well.
algol13

Answer:

\displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

  • Order of Operations
  • Equality Properties

<u>Algebra I</u>

  • Functions
  • Function Notation
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}

<u>Algebra II</u>

  • Natural logarithms ln and Euler's number e

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Slope Fields

  • Separation of Variables
  • Solving Differentials

Integrals

  • Antiderivatives

Integration Constant C

Integration Rule [Reverse Power Rule]:                                                                   \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Property [Addition/Subtraction]:                                                           \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Logarithmic Integration:                                                                                            \displaystyle \int {\frac{1}{u}} \, dx = ln|u| + C

Step-by-step explanation:

*Note:  

When solving differential equations in slope fields, disregard the integration constant C for variable y.

<u />

<u>Step 1: Define</u>

\displaystyle \frac{dy}{dx} = x^2(y - 1)

\displaystyle f(0) = 3

<u>Step 2: Rewrite</u>

<em>Separation of Variables. Get differential equation to a form where we can integrate both sides and rewrite Leibniz Notation.</em>

  1. [Separation of Variables] Rewrite Leibniz Notation:                                      \displaystyle dy = x^2(y - 1) \ dx
  2. [Separation of Variables] Isolate <em>y</em>'s together:                                               \displaystyle \frac{1}{y - 1} \ dy = x^2 \ dx

<u>Step 3: Find General Solution Pt. 1</u>

  1. [Differential] Integrate both sides:                                                                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \int {x^2} \, dx
  2. [dx Integral] Integrate [Integration Rule - Reverse Power Rule]:                   \displaystyle \int {\frac{1}{y - 1}} \, dy = \frac{x^3}{3} + C

<u>Step 4: Find General Solution Pt. 2</u>

<em>Identify variables for u-substitution for dy.</em>

  1. Set:                                                                                                                    \displaystyle u = y - 1
  2. Differentiate [Basic Power Rule]:                                                                     \displaystyle du = dy

<u>Step 5: Find General Solution Pt. 3</u>

  1. [dy Integral] U-Substitution:                                                                             \displaystyle \int {\frac{1}{u}} \, du = \frac{x^3}{3} + C
  2. [dy Integral] Integrate [Logarithmic Integration]:                                            \displaystyle ln|u| = \frac{x^3}{3} + C
  3. [Equality Property] e both sides:                                                                     \displaystyle e^\bigg{ln|u|} = e^\bigg{\frac{x^3}{3} + C}
  4. Simplify:                                                                                                             \displaystyle |u| = Ce^\bigg{\frac{x^3}{3}}
  5. Rewrite:                                                                                                             \displaystyle u = \pm Ce^\bigg{\frac{x^3}{3}}
  6. Back-Substitute:                                                                                               \displaystyle y - 1 = \pm Ce^\bigg{\frac{x^3}{3}}
  7. [Equality Property] Isolate <em>y</em>:                                                                            \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

General Form:  \displaystyle y = \pm Ce^\bigg{\frac{x^3}{3}} + 1

<u>Step 6: Find Particular Solution</u>

  1. Substitute in function values [General Form]:                                                \displaystyle 3 = \pm Ce^\bigg{\frac{0^3}{3}} + 1
  2. Simplify:                                                                                                             \displaystyle 3 = \pm C + 1
  3. [Equality Property] Isolate <em>C</em>:                                                                           \displaystyle 2 = \pm C
  4. Rewrite:                                                                                                             \displaystyle C = 2
  5. Substitute in <em>C</em> [General Form]:                                                                       \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1

∴ our particular solution is  \displaystyle y = 2e^\bigg{\frac{x^3}{3}} + 1.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Differentials and Slope Fields

Book: College Calculus 10e  

6 0
3 years ago
Rachel enjoys outdoors. Today she wakes 5 2/3 miles in 2 2/3 hours. What is Rachels unit walking rate in miles per hour and in h
dolphi86 [110]

Answer:

2 1/8 mph.

Step-by-step explanation:

Distance= time x speed

Same way, Distance divided by time=speed.

In this situation, just divide 5 2/3 by 2 2/3.

Hope this helps!

6 0
3 years ago
Which graph shows the solution to the inequality: 2 + x &gt; - 6
oee [108]

Answer:

C

Step-by-step explanation:

x≥−8

6 0
3 years ago
8x1 4* 28 × +8 help me ​
likoan [24]

Answer:

8x1 4* 28 × +8 = 28x + 12

8x^1 + 4 times 28 + 8

Add common Factors which are 8x and 28x added they equals 36x and 4 and 8 which equals 12 so now we got 28x + 12 and that is the answer

<u>PLEASE GIVE BRAINLIEST THANK YOU!!!</u>

6 0
1 year ago
Other questions:
  • Which are the solutions of the quadratic equation? x2 = 9x + 6
    15·2 answers
  • Estimate the quotient 63.5 dividend by 5
    11·1 answer
  • What is 9/4 as a mixed number
    10·2 answers
  • Krista and Nick put a down payment of 20% on the purchase of their house, and then financed $200,000. What was the purchase pric
    9·2 answers
  • A Paired t-Test reduces to the case of hypothesis test on a mean, variances unknown. A. True B. False
    12·1 answer
  • 845,333,129 expanded​
    8·1 answer
  • Some plz help me out. whoever gets ir right gets brainliest
    8·1 answer
  • How many months are ther in ¾ years?​
    7·2 answers
  • Can someone answer the questions on my page if so ill give all the correct answers brainlist.
    7·1 answer
  • Please I need help I’m being timed.please
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!