1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
skelet666 [1.2K]
1 year ago
8

7 pounds of potatoes cost $63. How many pounds ofpotatoes can you get with $261?

Mathematics
1 answer:
kozerog [31]1 year ago
3 0

We know that 7 pounds of potatoes cost $63.

This is a proportional relationship between quantity (pounds of potatoes) and cost.

We can calculate how many pounds of potatoes we can get with $261 applying the Rule of three:

261\text{ \$}\cdot(\frac{7\text{ pounds}}{63\text{ \$}})=29\text{ pounds}

We can buy 29 pounds of potatoes with $261

NOTE: I use the units ($ and pounds) to know how to multiply them in order to get the result I was looking for.

You might be interested in
Please help! 5 3/4-3 1/4=?
KonstantinChe [14]
Your answer will be 2 2/4. If you want it simplified it will be 2 1/2
6 0
3 years ago
Decide what information is needed to answer the following
oee [108]

Answer:

sgst

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
The third-degree Taylor polynomial about x = 0 of In(1 - x) is
gizmo_the_mogwai [7]

Answer:

\displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Functions
  • Function Notation

<u>Calculus</u>

Derivatives

Derivative Notation

Derivative Rule [Quotient Rule]:                                                                                \displaystyle \frac{d}{dx} [\frac{f(x)}{g(x)} ]=\frac{g(x)f'(x)-g'(x)f(x)}{g^2(x)}

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

MacLaurin/Taylor Polynomials

  • Approximating Transcendental and Elementary functions
  • MacLaurin Polynomial:                                                                                     \displaystyle P_n(x) = \frac{f(0)}{0!} + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + ... + \frac{f^{(n)}(0)}{n!}x^n
  • Taylor Polynomial:                                                                                            \displaystyle P_n(x) = \frac{f(c)}{0!} + \frac{f'(c)}{1!}(x - c) + \frac{f''(c)}{2!}(x - c)^2 + \frac{f'''(c)}{3!}(x - c)^3 + ... + \frac{f^{(n)}(c)}{n!}(x - c)^n

Step-by-step explanation:

*Note: I will not be showing the work for derivatives as it is relatively straightforward. If you request for me to show that portion, please leave a comment so I can add it. I will also not show work for elementary calculations.

<u />

<u>Step 1: Define</u>

<em>Identify</em>

f(x) = ln(1 - x)

Center: x = 0

<em>n</em> = 3

<u>Step 2: Differentiate</u>

  1. [Function] 1st Derivative:                                                                                  \displaystyle f'(x) = \frac{1}{x - 1}
  2. [Function] 2nd Derivative:                                                                                \displaystyle f''(x) = \frac{-1}{(x - 1)^2}
  3. [Function] 3rd Derivative:                                                                                 \displaystyle f'''(x) = \frac{2}{(x - 1)^3}

<u>Step 3: Evaluate Functions</u>

  1. Substitute in center <em>x</em> [Function]:                                                                     \displaystyle f(0) = ln(1 - 0)
  2. Simplify:                                                                                                             \displaystyle f(0) = 0
  3. Substitute in center <em>x</em> [1st Derivative]:                                                             \displaystyle f'(0) = \frac{1}{0 - 1}
  4. Simplify:                                                                                                             \displaystyle f'(0) = -1
  5. Substitute in center <em>x</em> [2nd Derivative]:                                                           \displaystyle f''(0) = \frac{-1}{(0 - 1)^2}
  6. Simplify:                                                                                                             \displaystyle f''(0) = -1
  7. Substitute in center <em>x</em> [3rd Derivative]:                                                            \displaystyle f'''(0) = \frac{2}{(0 - 1)^3}
  8. Simplify:                                                                                                             \displaystyle f'''(0) = -2

<u>Step 4: Write Taylor Polynomial</u>

  1. Substitute in derivative function values [MacLaurin Polynomial]:                 \displaystyle P_3(x) = \frac{0}{0!} + \frac{-1}{1!}x + \frac{-1}{2!}x^2 + \frac{-2}{3!}x^3
  2. Simplify:                                                                                                             \displaystyle P_3(x) = -x - \frac{x^2}{2} - \frac{x^3}{3}

Topic: AP Calculus BC (Calculus I/II)

Unit: Taylor Polynomials and Approximations

Book: College Calculus 10e

5 0
3 years ago
What is the quotient of x and three increased by 12 = 20
san4es73 [151]

Answer:

x= 24

Step-by-step explanation:

Quotient means divide, increased means add

x/3 + 12 =20

Subtract 12 from each side

x/3 +12-12 = 20-12

x/3=8

Multiply each side by 3

x/3 * 3 =8*3

x= 24

8 0
2 years ago
Read 2 more answers
Can someone please help me with this?
Contact [7]

Answer:

i need points

Step-by-step explanation:

i need points lol ,, hope you find your answer i guess .

4 0
3 years ago
Other questions:
  • Choose the kind(s) of symmetry: point, line, plane, or none. 7
    6·2 answers
  • Twenty percent of drivers driving between 10 pm and 3 am are drunken drivers. In a random sample of 12 drivers driving between 1
    6·1 answer
  • Please Help I'm Confused...
    12·2 answers
  • Approximtely how many 27cubic volume cabinets will a container98,000cbic volume hold?
    13·1 answer
  • If i had 12$ but I spent 2 how much would I have left​
    6·2 answers
  • What is the area of the kite
    6·1 answer
  • A mother is to give her child 10 ccs of medicine every
    13·2 answers
  • Express 0.032 as a fraction in lowest terms
    14·2 answers
  • Find the value of x in the proportion. Check your answer.
    11·1 answer
  • What is 10 x 42 – 6 x 3 + 3 ? Evaluating expressions with Exponents​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!