Answer: x < 3 or x ≥ 11
(-∞, 3) or [11, ∞)
Step-by-step explanation:
subtract 4 from each side
2x < 6 . or . 3x ≥ 33
x < 3 or x ≥ 11
make sure you have an OPEN DOT at 3 pointing to negative infinity and a CLOSED DOT at 11 pointing to positive infinity.
Answer: -22
Step-by-step explanation:
In the first question, we can simplify 2√8 to 4√2, making it :
(√10 + 4√2)(√10 - 4√2)
When you FOIL, √10(√10) = 10, and 4√2 * -4√2 = -32. The others cancel each other out. So -32 + 10 = -22.
Answer: cos(x)
Step-by-step explanation:
We have
sin ( x + y ) = sin(x)*cos(y) + cos(x)*sin(y) (1) and
cos ( x + y ) = cos(x)*cos(y) - sin(x)*sin(y) (2)
From eq. (1)
if x = y
sin ( x + x ) = sin(x)*cos(x) + cos(x)*sin(x) ⇒ sin(2x) = 2sin(x)cos(x)
From eq. 2
If x = y
cos ( x + x ) = cos(x)*cos(x) - sin(x)*sin(x) ⇒ cos²(x) - sin²(x)
cos (2x) = cos²(x) - sin²(x)
Hence:The expression:
cos(2x) cos(x) + sin(2x) sin(x) (3)
Subtition of sin(2x) and cos(2x) in eq. 3
[cos²(x)-sin²(x)]*cos(x) + [(2sen(x)cos(x)]*sin(x)
and operating
cos³(x) - sin²(x)cos(x) + 2sin²(x)cos(x) = cos³(x) + sin²(x)cos(x)
cos (x) [ cos²(x) + sin²(x) ] = cos(x)
since cos²(x) + sin²(x) = 1
Stop with the links don’t work
Answer:
<h2>A, B, D, E</h2>
Step-by-step explanation:
2(2x + 1) = (2)(2x) + (2)(1) = 4x + 2 → A
<em>used distributive property</em>
2(2x + 1) = 2(1 + 2x) → B
<em>used commutative property</em>
2(2x + 1) = (2x + 1) + (2x + 1) = 2x + 1 + 2x + 1 → D
<em>used 2a = a + a</em>
2(2x + 1) = 4x + 2 = x + x + x + x + 1 + 1 → E
<em>used 4x = x + x + x + x and 2 = 1 + 1</em>