(a)
The inverse is when you swap the variables and solve for y.
g(t) = 2t - 1 (Note: g(t) represents y)
rewrite as: y = 2t - 1
swap the variables: t = 2y - 1
solve for y: t + 1 = 2y
![\frac{t + 1}{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bt%20%2B%201%7D%7B2%7D%20)
= y
Answer for (a):
=
(b)
Same steps as part (a) above:
h(t) = 4t + 3
rewrite as: y = 4t + 3
swap the variables: t = 4y + 3
solve for y:
Answer for (b):
= ![\frac{t - 3}{4}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bt%20-%203%7D%7B4%7D%20)
(c)
![g^{-1} ( h^{-1}(t)) = g^{-1} (\frac{t - 3}{4})](https://tex.z-dn.net/?f=%20g%5E%7B-1%7D%20%28%20h%5E%7B-1%7D%28t%29%29%20%3D%20%20g%5E%7B-1%7D%20%28%5Cfrac%7Bt%20-%203%7D%7B4%7D%29)
replace all t's in the
![g^{-1}(t)](https://tex.z-dn.net/?f=%20g%5E%7B-1%7D%28t%29)
equation with
![g^{-1} (\frac{t - 3}{4})](https://tex.z-dn.net/?f=%20g%5E%7B-1%7D%20%28%5Cfrac%7Bt%20-%203%7D%7B4%7D%29)
=
![\frac{ \frac{t-3}{4} + 1}{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%20%5Cfrac%7Bt-3%7D%7B4%7D%20%2B%201%7D%7B2%7D%20)
=
![\frac{ \frac{t-3}{4} + \frac{4}{4}}{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%20%5Cfrac%7Bt-3%7D%7B4%7D%20%2B%20%20%5Cfrac%7B4%7D%7B4%7D%7D%7B2%7D%20)
=
![\frac{ \frac{t - 3 + 4}{4}}{2}](https://tex.z-dn.net/?f=%20%5Cfrac%7B%20%5Cfrac%7Bt%20-%203%20%2B%204%7D%7B4%7D%7D%7B2%7D%20)
=
Answer for (c):
= ![\frac{t + 1}{8}](https://tex.z-dn.net/?f=%20%20%5Cfrac%7Bt%20%2B%201%7D%7B8%7D)
(d)
h(g(t)) = h(2t - 1) = 4(2t - 1) + 3 = 8t - 4 + 3 = 8t - 1
Answer for (d): h(g(t)) = 8t - 1
(e)
h(g(t)) = 8t - 1
y = 8 t - 1
t = 8y - 1
t + 1 = 8y
![\frac{t + 1}{8}](https://tex.z-dn.net/?f=%20%5Cfrac%7Bt%20%2B%201%7D%7B8%7D%20)
= y
Answer for (e): inverse of h(g(t)) =
Answer:
Has to be the first one....
Step-by-step explanation:
Answer:
7
Step-by-step explanation:
By Basic proportionality theorem:
![\frac{10}{8} = \frac{3x - 6}{12} \\ \\ \frac{10 \times 12}{8} = 3x - 6 \\ \\ \frac{120}{8} = 3x - 6 \\ \\ 15 = 3x - 6 \\ 15 + 6 = 3x \\ 21 = 3x \\ \frac{21}{3} = x \\ 7 = x \\ \\ \huge \red { \boxed{x = 7}}](https://tex.z-dn.net/?f=%20%5Cfrac%7B10%7D%7B8%7D%20%20%3D%20%20%5Cfrac%7B3x%20-%206%7D%7B12%7D%20%20%5C%5C%20%20%5C%5C%20%20%5Cfrac%7B10%20%5Ctimes%2012%7D%7B8%7D%20%20%3D%203x%20-%206%20%5C%5C%20%20%5C%5C%20%20%5Cfrac%7B120%7D%7B8%7D%20%20%3D%203x%20-%206%20%5C%5C%20%20%5C%5C%2015%20%3D%203x%20-%206%20%5C%5C%2015%20%2B%206%20%3D%203x%20%5C%5C%2021%20%3D%203x%20%5C%5C%20%20%5Cfrac%7B21%7D%7B3%7D%20%20%3D%20x%20%5C%5C%207%20%3D%20x%20%5C%5C%20%20%5C%5C%20%20%5Chuge%20%5Cred%20%7B%20%5Cboxed%7Bx%20%3D%207%7D%7D)