Answer:
(1.37) AUB = { 1,2,3,4,5,6}
(1.38) AUC = { 1,2,3,4,5 }
(1.39)BUC = { 1,2,3,4,5,6}
(1.40) { 2,4 }
(1.41) { 1,3,5 }
(1.42) { phi }
(1.43) AU(BUC) = { 1,2,3,4,5,6 }
(1.44) { phi }
(1.45) {1,2,3,4,5}
(1.46) { 1,2,3,4,5 }

Answer:
(i) ∠ABH = 14.5°
(ii) The length of AH = 4.6 m
Step-by-step explanation:
To solve the problem, we will follow the steps below;
(i)Finding ∠ABH
first lets find <HBC
<BHC + <HBC + <BCH = 180° (Sum of interior angle in a polygon)
46° + <HBC + 90 = 180°
<HBC+ 136° = 180°
subtract 136 from both-side of the equation
<HBC+ 136° - 136° = 180° -136°
<HBC = 44°
lets find <ABC
To do that, we need to first find <BAC
Using the sine rule
= 
A = ?
a=6.9
C=90
c=13.2
= 
sin A = 6.9 sin 90 /13.2
sinA = 0.522727
A = sin⁻¹ ( 0.522727)
A ≈ 31.5 °
<BAC = 31.5°
<BAC + <ABC + <BCA = 180° (sum of interior angle of a triangle)
31.5° +<ABC + 90° = 180°
<ABC + 121.5° = 180°
subtract 121.5° from both-side of the equation
<ABC + 121.5° - 121.5° = 180° - 121.5°
<ABC = 58.5°
<ABH = <ABC - <HBC
=58.5° - 44°
=14.5°
∠ABH = 14.5°
(ii) Finding the length of AH
To find length AH, we need to first find ∠AHB
<AHB + <BHC = 180° ( angle on a straight line)
<AHB + 46° = 180°
subtract 46° from both-side of the equation
<AHB + 46°- 46° = 180° - 46°
<AHB = 134°
Using sine rule,
= 
AH = 13.2 sin 14.5 / sin 134
AH≈4.6 m
length AH = 4.6 m
<u>Answer:</u>
The vertical axis should begin with 0 inches.
<u>Step-by-step explanation:</u>
The vertical axis must start with 0 inches to ensure accuracy for the measures of every plant since 28% of the plants in the garden are under 6 inches.
If the vertical axis begins with 6 inches or above, we can miss a lot of the gardener's data, especially the plants which are under 6 inches.
Therefore, to ensure that the graph does not mislead any measures of the plant, the vertical axis must begin with 0 inches.
Answer:
18, -3
using the formula for midpoint M=(x1+x2)/2 ,(y1+y2)/2
Step-by-step explanation:
all I see is a piece of paper