Answer:
x=-10
Step-by-step explanation:
reorder the terms: 8+2x=18+3x
solve: 8+2x=18+3x
-3x -3x
_________
8-1x=18
-8. -8
________
-1x= 10
__ __
-1 -1
________
<u>x= -10</u>
Answer: see proof below
<u>Step-by-step explanation:</u>
Given: A + B + C = π → C = π - (A + B)
→ sin C = sin(π - (A + B)) cos C = sin(π - (A + B))
→ sin C = sin (A + B) cos C = - cos(A + B)
Use the following Sum to Product Identity:
sin A + sin B = 2 cos[(A + B)/2] · sin [(A - B)/2]
cos A + cos B = 2 cos[(A + B)/2] · cos [(A - B)/2]
Use the following Double Angle Identity:
sin 2A = 2 sin A · cos A
<u>Proof LHS → RHS</u>
LHS: (sin 2A + sin 2B) + sin 2C
LHS = RHS: 4 cos A · cos B · sin C = 4 cos A · cos B · sin C
R = 0.9
A value of 0.9 would indicate that the correlation is positive. Since it's also close to the value 1, it would also tell us that the correlation of y and x is strong. Therefore, r = 0.9 would be a strong linear association in which y increases as x increases.
r = -1.0
Since the value of r is negative, this would mean that the correlation is also negative. Furthermore, the value of r is also at the minimum point which is -1.0 thus this would tell us that the correlation is a perfect linear association in which y decreases as x increases.
r = -0.6
Likewise, this r value is also negative thus allowing us to know that y will decrease as x increases. The value of r, which is -0.6, is also close to -1.0. This allows us to tell that it is a strong relationship. Therefore, r = -0.6 is a strong linear association in which y decreases as x increases.
r = 0.1
For this correlation, the r value is positive. This would indicate that the value of y will increase as x increases. Since the r value is only 0.1, we cannot say that it is a strong relationship since it is far from the maximum value for a perfect relationship which is 1. Therefore, r = 0.1 is a moderate linear association in which y increases as x increases.
I don’t know what the equation is but when using elimination you should cancel out opposite numbers such as 4x and negative 4x