Answer:
- <em>The net ionic equation is: </em><u>Ag⁺ (aq) + Cl ⁻ (aq) → AgCl (s)</u>
Explanation:
<u>1) Start by writing the total ionic equation:</u>
The total ionic equation shows each aqueous substance in its ionized form, while the solid or liquid substances are shown with their chemical formula.
These are the ionic species:
- AgF (aq) → Ag⁺ (aq) + F⁻ (aq)
- NH₄Cl (aq) → NH₄⁺ (aq) + Cl ⁻ (aq)
- NH₄F(aq) → NH₄⁺ (aq) + F⁻ (aq)
Then, replace each chemical formula in the chemical equation by those ionic forms:
- Ag⁺ (aq) + F⁻ (aq) + NH₄⁺ (aq) + Cl ⁻ (aq) → AgCl (s) + NH₄⁺ (aq) + F⁻ (aq)
That is the total ionic equation.
<u>2) Spectator ions:</u>
The ions that appear in both the reactant side and the product side are considered spectator ions (they do not change), and so they are canceled.
In our total ionic equation they are F⁻ (aq) and NH₄⁺ (aq).
After canceling them, you get the net ionic equation:
<u>3) Net ionic equation:</u>
- Ag⁺ (aq) + Cl ⁻ (aq) → AgCl (s) ← answer
I think it will cause the reaction to be different since temp. is a physical property.
When radioactive decay occurs, the original nucleus splits into daughter nuclei and the resulting nucleus is more stable than the original nucleus. The nucleus can be of a different element than the original.
Unstable nuclei often undergo radioactive decay. In a radioactive decay, the unstable nucleus is broken up into other nuclei. Usually, the nuclei formed during radioactive decay are smaller in mass compared to the original nucleus.
Also, the resulting nucleus is more stable than the original nucleus. The nucleus can be of a different element than the original.