Answer:
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
Explanation:
Step 1: Given data
The supercritical CO2 has a density of 0.469 g/cm³ (or 0.469 g/mL)
The sample hasa volume of 25.0 mL
Step 2: Calculating mass of the sample
The density is the mass per amount of volume
0.469g/cm³ = 0.469g/ml
The mass for a sample of 25.0 mL = 0.469g/mL * 25.0 mL = 11.725g ≈ 11.7g
The mass of this 25 mL supercritical CO2 sample has a mass of 11.7g
Answer:
Yes
Explanation:
There is a difference between the homogeneous mixture of the hydrogen and the oxygen in a 2:1 ratio and the sample of the water vapor.
In the homogeneous mixture of the hydrogen and the oxygen which are present in the ratio, 2:1 , the elements are not chemically combined. They are explosive also as both shows their specific properties. They can be separated by physical means (Condensation, diffusion).
On the other hand, in water vapor, the two elements are chemically bonded in a specific mixture which cannot be separated via physical means. Water has its unique properties and they can be separated by chemical means only.
It is water soluble so is also soluble in aqueous solutions of NaOH or NaHCO3.
There are 18 protons and electrons and 22 neutrons in the atom
Answer:
C6H12O6 + 6O2 → 6CO2 + 6H2O
Explanation:
Cellular respiration occurs in the mitochondria of cells. It is a process in which sugar is combined with oxygen to produce energy, water and carbon dioxide. This is the major process by which energy is released in living organisms.
Aerobic respiration involves a series of chemical reactions. These reactions commence with sugar and oxygen then it produces carbon dioxide and water according to the reaction equation; C6H12O6 + 6O2 → 6CO2 + 6H2O.