Answer:
22.5 lbs
Step-by-step explanation:
First you find the cubic feet. That is the volume of the object which is length*width*height.
In your example, they are using inches. So you have to convert all units to feet. That would be 0.5 inches, 0.5 inches, and 5/3 inches. The volume would be 0.5*0.5*5/3 which is about 5/12 cubic feet
You then take that 5/12 cubic feet and multiply it by the 54 lbs/cubic foot. The answer would be 22.5 lbs
So for this, we will be using synthetic division. To set it up, have the equation so that the divisor is -10 (since that is the solution of k + 10 = 0) and the dividend are the coefficients. Our equation will look as such:
<em>(Note that synthetic division can only be used when the divisor is a 1st degree binomial)</em>
- -10 | 1 + 2 - 82 - 28
- ---------------------------
Now firstly, drop the 1:
- -10 | 1 + 2 - 82 - 28
- ↓
- -------------------------
- 1
Next, you are going to multiply -10 and 1, and then combine the product with 2.
- -10 | 1 + 2 - 82 - 28
- ↓ - 10
- -------------------------
- 1 - 8
Next, multiply -10 and -8, then combine the product with -82:
- -10 | 1 + 2 - 82 - 28
- ↓ -10 + 80
- -------------------------
- 1 - 8 - 2
Next, multiply -10 and -2, then combine the product with -28:
- -10 | 1 + 2 - 82 - 28
- ↓ -10 + 80 + 20
- -------------------------
- 1 - 8 - 2 - 8
Now, since we know that the degree of the dividend is 3, this means that the degree of the quotient is 2. Using this, the first 3 terms are k^2, k, and the constant, or in this case k² - 8k - 2. Now what about the last coefficient -8? Well this is our remainder, and will be written as -8/(k + 10).
<u>Putting it together, the quotient is
</u>
Answer:
8 square units
Step-by-step explanation:
The figure is a trapezoid. The area of it is given by the formula ...
A = (1/2)(b1 +b2)h
where b1 and b2 are the lengths of the parallel bases and h is the distance between them.
Your figure shows the base lengths to be 5 and 3, and their separation to be 2. Filling the numbers in the formula, we have ...
A = (1/2)(5 +3)(2) = (1/2)(8)(2) = 4·2 = 8
The area of the figure is 8 square units.
_____
The right-pointing arrows on the horizontal lines identify those lines as being parallel. The right-angle indicator and the 2 next to the dotted line indicate the perpendicular distance between the parallel lines is 2 units.
8x - 4y = -12
4y = 8x + 12
y = 8/4 x + 12/4
y = 2x + 3
When x = -3,
y = 2(-3) + 3 = -6 + 3 = -3
When x = -1,
y = 2(-1) + 3 = -2 + 3 = 1
When x = 1,
y = 2(1) + 3 = 2 + 3 = 5