QuestionDetermine the value(s) for which the rational expressionlist them separated by a comma, e.g. n = 2,3.-3n + 12is undefine
d. If there's more than one value,84n2 + 76n +16
1 answer:
A rational expression is defined for all real numbers except the zeros of the denominator.
Then, find the zeros of the denominator to find the values for which the given rational expression is undefined:

Use quadratic formula:
![\begin{gathered} ax^2+bx+c=0 \\ x=\frac{-b\pm\sqrt[]{b^2-4ac}}{2a} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20ax%5E2%2Bbx%2Bc%3D0%20%5C%5C%20x%3D%5Cfrac%7B-b%5Cpm%5Csqrt%5B%5D%7Bb%5E2-4ac%7D%7D%7B2a%7D%20%5Cend%7Bgathered%7D)
![\begin{gathered} n=\frac{-76\pm\sqrt[]{76^2-4(84)(16)}}{2(84)} \\ \\ n=\frac{-76\pm\sqrt[]{5776-5376}}{168} \\ \\ n=\frac{-76\pm\sqrt[]{400}}{168} \\ \\ n=\frac{-76\pm20}{168} \\ \\ n_1=\frac{-76+20}{168}=\frac{-56}{168}=-\frac{1}{3} \\ \\ n_2=\frac{-76-20}{168}=\frac{-96}{168}=-\frac{4}{7} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20n%3D%5Cfrac%7B-76%5Cpm%5Csqrt%5B%5D%7B76%5E2-4%2884%29%2816%29%7D%7D%7B2%2884%29%7D%20%5C%5C%20%20%5C%5C%20n%3D%5Cfrac%7B-76%5Cpm%5Csqrt%5B%5D%7B5776-5376%7D%7D%7B168%7D%20%5C%5C%20%20%5C%5C%20n%3D%5Cfrac%7B-76%5Cpm%5Csqrt%5B%5D%7B400%7D%7D%7B168%7D%20%5C%5C%20%20%5C%5C%20n%3D%5Cfrac%7B-76%5Cpm20%7D%7B168%7D%20%5C%5C%20%20%5C%5C%20n_1%3D%5Cfrac%7B-76%2B20%7D%7B168%7D%3D%5Cfrac%7B-56%7D%7B168%7D%3D-%5Cfrac%7B1%7D%7B3%7D%20%5C%5C%20%20%5C%5C%20n_2%3D%5Cfrac%7B-76-20%7D%7B168%7D%3D%5Cfrac%7B-96%7D%7B168%7D%3D-%5Cfrac%7B4%7D%7B7%7D%20%5Cend%7Bgathered%7D)
<h2>Then, the given rational expression is undefined for:</h2><h2>n= -1/3 , -4/7</h2>
You might be interested in
I should answere should be C
So from 98 to 110.92 is just 12.92 extra bucks.
if we take 98 to be the 100%, what is 12.92 off of it in percentage?
It would be still be X. Any number times 1 is that number. For example 3x1=3 and 325x1=325 :)