1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
denis-greek [22]
1 year ago
6

First question, thanks. I believe there should be 3 answers

Mathematics
1 answer:
zysi [14]1 year ago
3 0

Given: The following functions

A)cos^2\theta=sin^2\theta-1B)sin\theta=\frac{1}{csc\theta}\begin{gathered} C)sec\theta=\frac{1}{cot\theta} \\ D)cot\theta=\frac{cos\theta}{sin\theta} \\ E)1+cot^2\theta=csc^2\theta \end{gathered}

To Determine: The trigonometry identities given in the functions

Solution

Verify each of the given function

\begin{gathered} cos^2\theta=sin^2\theta-1 \\ Note\text{ that} \\ sin^2\theta+cos^2\theta=1 \\ cos^2\theta=1-sin^2\theta \\ Therefore \\ cos^2\theta sin^2\theta-1,NOT\text{ }IDENTITIES \end{gathered}

B

\begin{gathered} sin\theta=\frac{1}{csc\theta} \\ Note\text{ that} \\ csc\theta=\frac{1}{sin\theta} \\ sin\theta\times csc\theta=1 \\ sin\theta=\frac{1}{csc\theta} \\ Therefore \\ sin\theta=\frac{1}{csc\theta},is\text{ an identities} \end{gathered}

C

\begin{gathered} sec\theta=\frac{1}{cot\theta} \\ note\text{ that} \\ cot\theta=\frac{1}{tan\theta} \\ tan\theta cot\theta=1 \\ tan\theta=\frac{1}{cot\theta} \\ Therefore, \\ sec\theta\ne\frac{1}{cot\theta},NOT\text{ IDENTITY} \end{gathered}

D

\begin{gathered} cot\theta=\frac{cos\theta}{sin\theta} \\ Note\text{ that} \\ cot\theta=\frac{1}{tan\theta} \\ cot\theta=1\div tan\theta \\ tan\theta=\frac{sin\theta}{cos\theta} \\ So, \\ cot\theta=1\div\frac{sin\theta}{cos\theta} \\ cot\theta=1\times\frac{cos\theta}{sin\theta} \\ cot\theta=\frac{cos\theta}{sin\theta} \\ Therefore \\ cot\theta=\frac{cos\theta}{sin\theta},is\text{ an Identity} \end{gathered}

E

\begin{gathered} 1+cot^2\theta=csc^2\theta \\ csc^2\theta-cot^2\theta=1 \\ csc^2\theta=\frac{1}{sin^2\theta} \\ cot^2\theta=\frac{cos^2\theta}{sin^2\theta} \\ So, \\ \frac{1}{sin^2\theta}-\frac{cos^2\theta}{sin^2\theta} \\ \frac{1-cos^2\theta}{sin^2\theta} \\ Note, \\ cos^2\theta+sin^2\theta=1 \\ sin^2\theta=1-cos^2\theta \\ So, \\ \frac{1-cos^2\theta}{sin^2\theta}=\frac{sin^2\theta}{sin^2\theta}=1 \\ Therefore \\ 1+cot^2\theta=csc^2\theta,\text{ is an Identity} \end{gathered}

Hence, the following are identities

\begin{gathered} B)sin\theta=\frac{1}{csc\theta} \\ D)cot\theta=\frac{cos\theta}{sin\theta} \\ E)1+cot^2\theta=csc^2\theta \end{gathered}

The marked are the trigonometric identities

You might be interested in
Please help w these I’m not too sure
Nataly_w [17]
9) first option 10)last option
8 0
2 years ago
Math graph and solution y=3x2+18x-21
Likurg_2 [28]
We have that

<span>y=3x</span>²<span>+18x-21

using a graph tool
see the attached figure

the solutions are
x=-7
x=1</span>

6 0
3 years ago
ARE YOU GOOD AT GEOMETRY?? WILLING TO HELP SOMEONE OUT?? NEED EASY POINTS AND BRAINLIEST?? COME RIGHT THIS WAY ALL HELP IS APPRE
BlackZzzverrR [31]

Answer:

C: (-8,3) R:5

Step-by-step explanation:

The equation of a circle can be written as:

(x-h)^2+(y-k)^2=r^2

where (h,k) is the center, and r is the radius

We have the equation:

(x+8)^2+(y-3)^2=25

Center:

The center is (-8,3)

(x+8)^2--> (x-h)^2

Therefore the x coordinate of the center is -8

(y-3)^2-->(y-k)^2

Therefore the y coordinate of the center is 3

Radius

r^2=25

Take the square root of both sides

\sqrt{r^2}=\sqrt{25}

r=5

4 0
3 years ago
Read 2 more answers
Find the constant of variation k for the direct variation x -1 0 2 5 f(x) 2 0 -4 -10
Fofino [41]

Answer:

k = -2

Step-by-step explanation:

x     -1   0   2     5

f(x)  2   0  -4  -10

ƒ(x) = kx

Substitute a pair of values for x and ƒ(x)

-10 = k×5

Divide each side by 5

k = -2

The constant of variation k = -2.

8 0
3 years ago
70
BaLLatris [955]

Answer:

160 is the answer please tell me if im wrong

5 0
2 years ago
Other questions:
  • 7/8 times c equals 8
    15·2 answers
  • Jessa bought a yoyo from a company that claims that, with each retraction, the string rolls up by 60% of the original length. Sh
    10·1 answer
  • This graph shows the marginal costs of each bike, along with the market price. Select the correct answer from the options availa
    11·2 answers
  • If a 4 x 16 rectangle has the same area as a square, what is the length of a side of the square?
    11·1 answer
  • 1/3-(-1/5) A-1/2 B1/4 C2/15 D 8/15​
    10·1 answer
  • Find the measure of the missing angles.
    7·1 answer
  • Please help I’ll mark you as brainliest if correct!
    6·2 answers
  • Which transformation were applied to the graph of the parent function y=tan(x) to produce the function graphed below?
    15·1 answer
  • Convert the binary number 10101 to its base 10 equivalent.<br><br> 12<br> 21<br> 22<br> 31
    11·2 answers
  • Peter was thinking of a number. peter adds 6 to it, then doubles it and gets an answer of 48.5. what was the original numbe
    14·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!