Shown below is the graph on the x-y plane.
Your equation has only one variable, so a graph on the number line is appropriate. It would extend outward from ±2, where the points would be indicated by open circles.
Answer:
x = 2 ± (i)√5 (Answer b)
Step-by-step explanation:
x²-4x+9=0 can be solved in a variety of ways; the first two that come to mind that are also appropriate are (1) completing the square and (2) using the quadratic formula.
Completing the square is fast here:
Rewrite x²-4x+9=0 as x²-4x +9=0
Identify the coefficient of the x term: it is -4
Take half of that, obtaining -2
Square this result, obtaining 4
Add 4 to x²-4x +9=0, in the blank space in the middle, and then subtract 4: x²-4x +4 -4 +9=0
Rewrite x²-4x +4 as the square of a binomial:
(x - 2)² - 4 + 9 = 0 → (x - 2)² = -5
Take the square root of both sides: x - 2 = ±√(-5) = ± (i)√5
Then x = 2 ± (i)√5
Answer:
C) 120 degrees
Step-by-step explanation:
m<A + m<B + m<C = 180
45 + m<B + 15 = 180
m<B + 60 = 180
m<B = 120
Answer:
-1.3 and 1.55
Step-by-step explanation:
Answer:
see explanation
Step-by-step explanation:
The translation represented by ![\left[\begin{array}{ccc}1\\4\\\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%5C%5C4%5C%5C%5Cend%7Barray%7D%5Cright%5D)
interprets as a shift of 1 unit to the right ( add 1 to x- coordinate ) and a
shift of 4 units down ( subtract 4 from the y- coordinate ), then
(1, 4 ) → (1 + 1, 4 - 4 ) → (2, 0 )
(4, 4 ) → (4 + 1, 4 - 4 ) → (5, 0 )
(6, 2 ) → (6 + 1, 2 - 4 ) → (7, - 2 )
(1, 2 ) → (1 + 1, 2 - 4 ) → (2, - 2 )