<span>It's 1/5(m-100). What you do is 1/5 and connect it with what is in the parenthesis and your answer will be -20 just like when you do 1/5m-20</span>
Amount of flour used in bread recipe =
cups
Amount of flour used in muffin recipe =
cups
We have to determine how much more flour is in the recipe.
Since, more amount of flour is used in bread recipe than in muffin recipe.
Total amount of more flour = ![3 \frac{1}{4} - 2 \frac{3}{4}](https://tex.z-dn.net/?f=3%20%5Cfrac%7B1%7D%7B4%7D%20-%202%20%5Cfrac%7B3%7D%7B4%7D)
= ![\frac{13}{4} - \frac{11}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B13%7D%7B4%7D%20-%20%5Cfrac%7B11%7D%7B4%7D)
= ![\frac{2}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B2%7D%7B4%7D)
= ![\frac{1}{2}](https://tex.z-dn.net/?f=%5Cfrac%7B1%7D%7B2%7D)
Therefore,
more cup of flour is used in bread recipe than in muffin recipe.
Now, we will determine the total amount of flour used in both recipe.
Total amount of flour used in bread and muffin recipe
= ![3 \frac{1}{4} + 2 \frac{3}{4}](https://tex.z-dn.net/?f=3%20%5Cfrac%7B1%7D%7B4%7D%20%2B%202%20%5Cfrac%7B3%7D%7B4%7D)
= ![\frac{13}{4} + \frac{11}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B13%7D%7B4%7D%20%2B%20%5Cfrac%7B11%7D%7B4%7D)
=![\frac{24}{4}](https://tex.z-dn.net/?f=%5Cfrac%7B24%7D%7B4%7D)
= 6 cups
Therefore, total 6 cups of flour are used in both the recipes.
standard form for a linear equation means
• all coefficients must be integers, no fractions
• only the constant on the right-hand-side
• all variables on the left-hand-side, sorted
• "x" must not have a negative coefficient
![(\stackrel{x_1}{4}~,~\stackrel{y_1}{1})\qquad (\stackrel{x_2}{2}~,~\stackrel{y_2}{-2}) ~\hfill \stackrel{slope}{m}\implies \cfrac{\stackrel{rise} {\stackrel{y_2}{-2}-\stackrel{y1}{1}}}{\underset{run} {\underset{x_2}{2}-\underset{x_1}{4}}}\implies \cfrac{-3}{-2}\implies \cfrac{3}{2} \\\\\\ \begin{array}{|c|ll} \cline{1-1} \textit{point-slope form}\\ \cline{1-1} \\ y-y_1=m(x-x_1) \\\\ \cline{1-1} \end{array}\implies y-\stackrel{y_1}{1}=\stackrel{m}{\cfrac{3}{2}}(x-\stackrel{x_1}{4})](https://tex.z-dn.net/?f=%28%5Cstackrel%7Bx_1%7D%7B4%7D~%2C~%5Cstackrel%7By_1%7D%7B1%7D%29%5Cqquad%20%28%5Cstackrel%7Bx_2%7D%7B2%7D~%2C~%5Cstackrel%7By_2%7D%7B-2%7D%29%20~%5Chfill%20%5Cstackrel%7Bslope%7D%7Bm%7D%5Cimplies%20%5Ccfrac%7B%5Cstackrel%7Brise%7D%20%7B%5Cstackrel%7By_2%7D%7B-2%7D-%5Cstackrel%7By1%7D%7B1%7D%7D%7D%7B%5Cunderset%7Brun%7D%20%7B%5Cunderset%7Bx_2%7D%7B2%7D-%5Cunderset%7Bx_1%7D%7B4%7D%7D%7D%5Cimplies%20%5Ccfrac%7B-3%7D%7B-2%7D%5Cimplies%20%5Ccfrac%7B3%7D%7B2%7D%20%5C%5C%5C%5C%5C%5C%20%5Cbegin%7Barray%7D%7B%7Cc%7Cll%7D%20%5Ccline%7B1-1%7D%20%5Ctextit%7Bpoint-slope%20form%7D%5C%5C%20%5Ccline%7B1-1%7D%20%5C%5C%20y-y_1%3Dm%28x-x_1%29%20%5C%5C%5C%5C%20%5Ccline%7B1-1%7D%20%5Cend%7Barray%7D%5Cimplies%20y-%5Cstackrel%7By_1%7D%7B1%7D%3D%5Cstackrel%7Bm%7D%7B%5Ccfrac%7B3%7D%7B2%7D%7D%28x-%5Cstackrel%7Bx_1%7D%7B4%7D%29)
![\stackrel{\textit{multiplying both sides by }\stackrel{LCD}{2}}{2(y-1)=2\left( \cfrac{3}{2}(x-4) \right)}\implies 2y-2 = 3(x-4)\implies 2y-2=3x-12 \\\\\\ -3x+2y-2=-12\implies -3x+2y=-10\implies \stackrel{\times -1\textit{ to both sides}}{3x-2y=10}](https://tex.z-dn.net/?f=%5Cstackrel%7B%5Ctextit%7Bmultiplying%20both%20sides%20by%20%7D%5Cstackrel%7BLCD%7D%7B2%7D%7D%7B2%28y-1%29%3D2%5Cleft%28%20%5Ccfrac%7B3%7D%7B2%7D%28x-4%29%20%5Cright%29%7D%5Cimplies%202y-2%20%3D%203%28x-4%29%5Cimplies%202y-2%3D3x-12%20%5C%5C%5C%5C%5C%5C%20-3x%2B2y-2%3D-12%5Cimplies%20-3x%2B2y%3D-10%5Cimplies%20%5Cstackrel%7B%5Ctimes%20-1%5Ctextit%7B%20to%20both%20sides%7D%7D%7B3x-2y%3D10%7D)
<span>$152.51
y o u r a n s w e r i s a b o v e
</span>