Step-by-step explanation:
<em>Hi</em><em> </em><em>there</em><em>!</em><em>!</em><em>!</em><em> </em>
<em>The</em><em> </em><em>answer</em><em> </em><em>is</em><em> </em><em>option A</em><em>. </em>
<em>reason</em><em> </em><em>look</em><em> </em><em>in</em><em> </em><em>picture</em><em>.</em><em> </em>
<em>if</em><em> </em><em>you</em><em> </em><em>want</em><em> </em><em>to</em><em> </em><em>solve</em><em> </em><em>it</em><em> </em><em>just</em><em> </em><em>cross</em><em> </em><em>multiply</em><em> </em><em>it</em><em>,</em>
<em>
</em>
<em>or</em><em>,</em>
<em>
</em>
<em>and</em><em> </em><em>the</em><em> </em><em>answer</em><em> </em><em>would</em><em> </em><em>be</em><em> </em><em>4</em><em>0</em><em>0</em><em>0</em><em>0</em><em>0</em><em>.</em>
<em>Hope</em><em> </em><em>it helps</em><em>.</em><em>.</em><em>.</em>
Answer: Can you explain more? you have to calculate it by an theorm
Step-by-step explanation:
The function is

1. let's factorize the expression

:

the zeros of f(x) are the values of x which make f(x) = 0.
from the factorized form of the function, we see that the roots are:
-3, multiplicity 1
3, multiplicity 1
0, multiplicity 3
(the multiplicity of the roots is the power of each factor of f(x) )
2.
The end behavior of f(x), whose term of largest degree is

, is the same as the end behavior of

, which has a well known graph. Check the picture attached.
(similarly the end behavior of an even degree polynomial, could be compared to the end behavior of

)
so, like the graph of

, the graph of

:
"As x goes to negative infinity, f(x) goes to negative infinity, and as x goes to positive infinity, f(x) goes to positive infinity. "
Answer:
dghsjk
Step-by-step explanation:
gdhsjka