Answer:
The answer is 4.28 moles
Explanation:
This is super easy okay, you won't forget this!
Basically mole ratios, we're just looking at the coefficients in front of the compounds, multiplying them, and dividing them as we see fit.
In this example, you can see how you need 2 moles of lithium bromide (LiBr) for the reaction, and 2 moles of lithium chloride (LiCl) will be produced.
Basically, the <u>molar ratio</u> is when you divide numbers and see how much of this do I have for that (if that makes sense).
So if you were to divide the 2 moles of LiBr / 2 moles of LiCl = 1. So we know that the mole ratio for LiBr to LiCl is 1:1 or 2:2, either or, it's the same thing.
SO THE BIG IDEA, if we have 4.28 moles of lithium bromide reacting, we should also have 4.28 moles of lithium chloride produced, BECAUSE the <u>mole ratio</u> is 1:1.
I hope this makes sense please tell me if it doesn't, I will try my best to explain a little more.
We have that all (ideal) gases obey the fundamental gas equation: PV=nRT where P is the Pressure, V is the Volume, n is the number of moles, R is a universal constant and T is the temperature in Kelvin. In this process, we have that both the number of moles and the temperature stays the same. So if we denote by i the initial conditions and by f the final conditions of the gas, we have:

. Hence, if we solve for the final Volume we get:

. Now we know all the other variables; substituting we get that the final volume is 6.7 L (6.716 L ).
You need to lose some energy from your very excited gas atoms. The easy answer is to lower the surrounding temperature. When the temperature drops, energy will be transferred out of your gas atoms into the colder environment. When you reach the temperature of the condensation point, you become a liquid.
Answer:
The pH of the solution is 1.66
Explanation:
Step 1: Data given
Number of moles HCl = 0.022 moles
Molar mass of HCl = 36.46 g/mol
Step 2: Calculate molarity of HCl
Molarity HCl = moles HCl / volume
Molarity HCl = 0.022 moles / 1 L = 0.022 M
[HCl] = [H+] = 0.022 M
Step 3: Calculate pH
pH = -log [H+]
pH = -log(0.022)
pH = 1.66
The pH of the solution is 1.66
Usually when you heat a substance it will inflate. When you
take a graph between temperature and volume it will rise linearly. At some
point, it will be drenched or become stable. We know that all materials have a
melting point or breakdown point. Subsequently this experiment, Marshall will determine
that substance's volume increase according to heat up to a specific
temperature.