First, we calculate the mass of the sample:
mass = density x volume
mass = 8.48 x 112.5
mass = 954 grams
Now, we will calculate the mass of each component using its percentage mass, then divide it by its atomic mass to find the moles and finally multiply the number of moles by the number of particles in a mole, that is, 6.02 x 10²³.
Zinc mass = 0.37 x 954
Zinc mass = 352.98 g
Zinc moles = 352.98 / 65
Zinc moles = 5.43
Zinc atoms = 5.43 x 6.02 x 10²³
Zinc atoms = 3.27 x 10²⁴
Copper mass = 0.63 x 954
Copper mass = 601.02 g
Copper moles = 601.02 / 64
Copper moles = 9.39
Copper atoms = 9.39 x 6.02 x 10²³
Copper atoms = 5.56 x 10²⁴
Based on factors affecting solution formation;
- Strong solvent-solute intermolecular forces favors solution formation.
- Increase in entropy favours solution formation
- Decrease in enthalpy favours solution formation
<h3>What is a solution?</h3>
A solution is a substance formed when a substance known as solute dissolves in another substance know as solvent.
Factors that affect solution formation include:
- strength of intermolecular forces between solute and solvent
- entropy
- enthalpy
Strong solvent-solute intermolecular forces favors solution formation.
Increase in entropy favours solution formation
Decrease in enthalpy favours solution formation.
Learn more about solutions at: brainly.com/question/6675586
2H₂₍g₎ + O₂ ₍g₎→ 2H₂O
138 mol H₂ × (2 mol H₂O ÷ 2 mol H₂)= 138 mol H₂O
64 mol O₂ × (2 mol H₂O ÷ 1 mol O₂)= 128 mol H₂O
128 mol H₂O
<span>To solve this problem, You need to look up a picture/diagram of the electromagnetic spectrum. This will have the wave regions listed as well</span> as frequencies and wavelength.
Wavelength is distance/length of one wave, which can be calculated using frequency (hz = s^-1) and the speed of light.
2.998 x 10^8 m/s ÷ 3 x 10^19 s^-1 = 9.99 x 10^-12 m
The Frequency given falls in between X-rays and Gamma rays. The wavelength however; is in the Gama ray region.