1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
laila [671]
3 years ago
7

What is one factor of 30x2 − 33x + 3?

Mathematics
1 answer:
olganol [36]3 years ago
8 0

Answer:

10x - 1

Step-by-step explanation:

30x^2 − 33x + 3 =

= 3(10x^2 - 11x + 1)

= 3(10x - 1)(x - 1)

Answer: 10x - 1

You might be interested in
If the radius of a circle is 8 feet, please find:
Alexandra [31]

Step-by-step explanation:

Radius (r) = 8 feet

Diameter(d) = 2 \times radius \\= 2 \times 8 = 16 \: feet \\  \\ circumference \\ c = \pi \: d = 3.14 \times 16 = 50.24 \: feet \\  \\ area = \pi {r}^{2}   \\ = 3.14 \times  {8}^{2}  \\  = 3.14 \times 64 \\  = 200.96 \:  {feet}^{2}

5 0
4 years ago
Helpppp pleaseeeeeeeeeeeeeee
Vesna [10]

Answer:

Find below the calculations of the two areas, each with two methods. The results are:

  • Upper triangle:

                     Area=5000\sqrt{3}units^2

  • Lower triangle:

                     Area=14,530m^2

Explanation:

<u>A) Method 1</u>

When you are not given the height, but you are given two sides and the included angle between the two sides, you can use this formula:

           Area=side_1\times side_2\times sin(\alpha)

Where, \alpha is the measure of the included angle.

1. <u>Upper triangle:</u>

          side_1=200units\\ \\ side_2=100units\\ \\ \alpha =60\º\\ \\ Area=200units\times 100units\times sin(60\º)/2\\ \\ Area=5000\sqrt{3}units^2

2. <u>Lower triangle:</u>

         side_1=231m\\ \\ side_2=150m\\ \\ \alpha =123\º\\ \\ Area=231m\times 150m\times sin(123\º)/2\\ \\ Area=14,529.96m^2\approx14,530m^2

<u></u>

<u>B) Method 2</u>

You can find the height of the triangle using trigonometric properties, and then use the very well known formula:

            Area=(1/2)\times base\times height

Use it for both triangles.

3. <u>Upper triangle:</u>

The trigonometric ratio that you can use is:

                    sine(\alpha)=opposite\text{ }leg/hypotenuse

Notice the height is the opposite leg to the angle of 60º, and the side that measures 100 units is the hypotenuse of that right triangle. Then:

         sin(60\º)=height/100units\\ \\ height=sin(60\º)\times100units\\ \\ height=50\sqrt{3}units

Area=(1/2)\times base\times height=(1/2)\times 200units\times 50\sqrt{3}units=5,000\sqrt{3}units^2

3. <u>Lower triangle:</u>

<u />

         sin(180\º-123\º)=height/231m\\ \\ height=sin(57\º)\times 231m\\ \\ height=193.7329m^2<u />

<u />

<u />Area=(1/2)\times base\times height=(1/2)\times 150m\times 193.7329m^2\\\\  Area=14,529.96m^2\approx 14,530m^2<u />

5 0
3 years ago
.. Which of the following are the coordinates of the vertices of the following square with sides of length a?
atroni [7]

Option A: O(0,0), S(0,a), T(a,a), W(a,0)

Option D: O(0,0), S(a,0), T(a,a), W(0,a)

Step-by-step explanation:

Option A: O(0,0), S(0,a), T(a,a), W(a,0)

To find the sides of a square, let us use the distance formula,

d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}

Now, we shall find the length of the square,

\begin{array}{l}{\text { Length } O S=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } S T=\sqrt{(a-0)^{2}+(a-a)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } T W=\sqrt{(a-a)^{2}+(0-a)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } O W=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a}\end{array}

Thus, the square with vertices O(0,0), S(0,a), T(a,a), W(a,0) has sides of length a.

Option B: O(0,0), S(0,a), T(2a,2a), W(a,0)

Now, we shall find the length of the square,

\begin{aligned}&\text { Length } O S=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\\&\text {Length } S T=\sqrt{(2 a-0)^{2}+(2 a-a)^{2}}=\sqrt{5 a^{2}}=a \sqrt{5}\\&\text {Length } T W=\sqrt{(a-2 a)^{2}+(0-2 a)^{2}}=\sqrt{2 a^{2}}=a \sqrt{2}\\&\text {Length } O W=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a\end{aligned}

This is not a square because the lengths are not equal.

Option C: O(0,0), S(0,2a), T(2a,2a), W(2a,0)

Now, we shall find the length of the square,

\begin{array}{l}{\text { Length OS }=\sqrt{(0-0)^{2}+(2 a-0)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } S T=\sqrt{(2 a-0)^{2}+(2 a-2 a)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } T W=\sqrt{(2 a-2 a)^{2}+(0-2 a)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } O W=\sqrt{(2 a-0)^{2}+(0-0)^{2}}=\sqrt{4 a^{2}}=2 a}\end{array}

Thus, the square with vertices O(0,0), S(0,2a), T(2a,2a), W(2a,0) has sides of length 2a.

Option D: O(0,0), S(a,0), T(a,a), W(0,a)

Now, we shall find the length of the square,

\begin{aligned}&\text { Length OS }=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } S T=\sqrt{(a-a)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } T W=\sqrt{(0-a)^{2}+(a-a)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } O W=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\end{aligned}

Thus, the square with vertices O(0,0), S(a,0), T(a,a), W(0,a) has sides of length a.

Thus, the correct answers are option a and option d.

8 0
3 years ago
. After a blizzard, 18 inches of snow sat on Maggie's driveway. She measured the snow each
den301095 [7]

Answer:

13.5

Step-by-step explanation:

answer 18-4-0.25

struggling dub deth duck

3 0
3 years ago
Who is the father of mathematics
gayaneshka [121]

Hi there!

I believe the father or modern mathematics is René Descartes.

Hope this helped!~


7 0
4 years ago
Read 2 more answers
Other questions:
  • a card is drawn from a standard deck of cards, then a month of the year is chosen. what is the probability of getting a diamond
    10·1 answer
  • The volume of a rectangular prism using variables
    12·1 answer
  • Is the square root of 10 rational or irrational?<br>help plz
    8·2 answers
  • At the city triathlon, athletes bike 110 miles, run a 23.5 miles marathon, and swim. If the total distance of this triathlon is
    7·1 answer
  • Kayson is looking at two buildings, building A and building B, at an angle of elevation of 40°. Building A is 120 feet away, and
    14·2 answers
  • Jessica choose fruit cup and salad as the side dishes with her lunch everyday for 15 days
    13·1 answer
  • HELP ME PLZ WILL MARK U AS BRAINLIEST
    9·1 answer
  • Find the slope of the line that passes through points (6,9) and (11,2)
    10·2 answers
  • Maria determined that these expressions are equivalent expressions using the values of x = 3 and x= 7 Which
    11·1 answer
  • The following are the times, in seconds, that 15 people spent taking an online survey.
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!