By Euler's method the <em>numerical approximate</em> solution of the <em>definite</em> integral is 4.189 648.
<h3>How to estimate a definite integral by numerical methods</h3>
In this problem we must make use of Euler's method to estimate the upper bound of a <em>definite</em> integral. Euler's method is a <em>multi-step</em> method, related to Runge-Kutta methods, used to estimate <em>integral</em> values numerically. By integral theorems of calculus we know that definite integrals are defined as follows:
∫ f(x) dx = F(b) - F(a) (1)
The steps of Euler's method are summarized below:
- Define the function seen in the statement by the label f(x₀, y₀).
- Determine the different variables by the following formulas:
xₙ₊₁ = xₙ + (n + 1) · Δx (2)
yₙ₊₁ = yₙ + Δx · f(xₙ, yₙ) (3) - Find the integral.
The table for x, f(xₙ, yₙ) and y is shown in the image attached below. By direct subtraction we find that the <em>numerical</em> approximation of the <em>definite</em> integral is:
y(4) ≈ 4.189 648 - 0
y(4) ≈ 4.189 648
By Euler's method the <em>numerical approximate</em> solution of the <em>definite</em> integral is 4.189 648.
To learn more on Euler's method: brainly.com/question/16807646
#SPJ1
The Answer is b: x = 18, y = -20
Proof:
Solve the following system:
{4 x + 3 y = 12 | (equation 1)
{7 x + 5 y = 26 | (equation 2)
Swap equation 1 with equation 2:
{7 x + 5 y = 26 | (equation 1)
{4 x + 3 y = 12 | (equation 2)
Subtract 4/7 × (equation 1) from equation 2:
{7 x + 5 y = 26 | (equation 1)
{0 x+y/7 = (-20)/7 | (equation 2)
Multiply equation 2 by 7:
{7 x + 5 y = 26 | (equation 1)
{0 x+y = -20 | (equation 2)
Subtract 5 × (equation 2) from equation 1:
{7 x+0 y = 126 | (equation 1)
{0 x+y = -20 | (equation 2)
Divide equation 1 by 7:
{x+0 y = 18 | (equation 1)
{0 x+y = -20 | (equation 2)
Collect results:
Answer: {x = 18, y = -20
Answer:
5/8
Step-by-step explanation:
Answer:
8 rolls for $1.89
Step-by-step explanation:
when you divide to see how much each one costs the 8 rolls is better
Step-by-step explanation:
please mark me as brainlest