Answer:
Volume of the cube = (2n6)³
Step-by-step explanation:
Volume of a cube = L*B*H
Volume of a cube= L*L*L=L³ (since all the sides of the cube are equal.
Volume of the cube = (2n6)³
Answer:
A
Step-by-step explanation:
This explanation mostly depends on what you're learning right now. The first way would be to convert this matrix to a system of equations like this.
g + t + k = 90
g + 2t - k = 55
-g - t + 3k = 30
Then you solve using normal methods of substitution or elimination. It seems to me that elimination is the quickest method.
g + t + k = 90
-g - t + 3k = 30
____________
0 + 0 + 4k = 120
4k = 120
k = 30
No you can plug this into the first two equations
g + t + (30) = 90
g + t = 60
and
g + 2t - (30) = 55
g + 2t = 85
now use elimination again by multiplying the first equation by -1
g + 2t = 85
-g - t = -60
_________
0 + t = 25
t = 25
Now plug those both back into one of the equations. I'll just do the first one.
g + (25) + (30) = 90
g = 35
Therefore, we know that Ted spent the least amount of time on the computer.
The second method is using matrix reduction and getting the matrix in the row echelon form, therefore solving using the gauss jordan method. If you would like me to go through this instead, please leave a comment.
Expanding
-3h-15+2=4h+24-9
-3h-4h=24-9-2+15
-7h=28
h=4
Answer:
1/8
Step-by-step explanation:
To simplify the expression √3/√8, we can first simplify the square root terms by finding the prime factorization of each number under the square root. The prime factorization of 3 is 3, and the prime factorization of 8 is 2 * 2 * 2.
We can then rewrite the square root terms as follows:
√3/√8 = √(3) / √(2 * 2 * 2)
Next, we can use the property of square roots that says that the square root of a number is equal to the square root of each of its prime factors. This means that we can rewrite the square root term as follows:
√(3) / √(2 * 2 * 2) = √(3) / √(2) / √(2) / √(2)
Since the square root of a number is the same as the number itself, we can simplify the expression further by removing the square root symbols from the prime numbers 2:
√(3) / √(2) / √(2) / √(2) = √(3) / 2 / 2 / 2
Finally, we can use the rules of division to simplify the expression even further:
√(3) / 2 / 2 / 2 = √(3) / (2 * 2 * 2)
Since any number divided by itself is equal to 1, we can simplify the expression one last time to get our final answer:
√(3) / (2 * 2 * 2) = 1/2 * 1/2 * 1/2 = 1/8
Therefore, the simplified form of the expression √3/√8 is 1/8.