Large polymers are created during dehydration synthesis, which are typically referred to as biological macromolecules. These compounds include proteins, lipids, carbohydrates, and nucleic acids.
As a result, the dehydration reaction is responsible for the formation of protein, lipid, and nucleic acids.
1. Protein structure
- Amino acid polymers form proteins. There are four different types of proteins, based on structure.
- The amino acid sequence of a protein is represented by its primary structure, which is a linear chain.
- The backbone (main chain) atoms of a polypeptide are arranged locally in space to form the protein's secondary structure.
- A polypeptide chain's whole three-dimensional structure is referred to as a protein's tertiary structure.
- The protein's quaternary structure, which is a three-dimensional arrangement of the subunits of a multi-subunit protein.
2. Lipid structure is a crucial element of the cell membrane. The structure is mostly composed of a glycerol backbone, two hydrophobic fatty acid tails, and a hydrophilic phosphate group.
3. Nucleic acids' structure: Nucleotide polymers make up nucleic acids. Each nucleotide is made up of an aromatic base with a N-atom connected to a pentose sugar with five carbons, which is then joined to a phosphate group.
To know more about biological macromolecules visit:
brainly.com/question/2141678
#SPJ4
Answer:urbanization is responsible for the loss of vegetation and soils.
Explanation:
As urbanization alters the natural amount of water that takes each route.
Muscle contraction happens only when the energy molecule called adenosine triphosphate (ATP) is present
Answer:
Evergreens are plants that maintain their leaves in all seasons and include trees such as pine, cedar, and mango. 2. Deciduous trees lose their leaves seasonally and include trees such as elm and maple. 3. Hardwoods reproduce using flowers and have broad leaves: hardwoods include trees such as maple, elm, and mango. 4. Conifer leaves are generally thin and needle-like, while seeds are contained in cones. Conifers include pine and cedar.
Explanation:
- Evergreens plants: These plants keep the foliage the year. They change leaves during their whole life, but the frequency in which they change them is not the same as the deciduous plants, and this event does not coincide with any season in particular. They do not need to lose leaves during unfavorable seasons. These species develop different strategies and adaptations to go through unfavorable weather conditions. They have special leaves to avoid water loss or freezing, some of them are thin and needle-like shaped, or might be covered with wax or fuzz. Example: Pine, cedar.
- Deciduous plants: During autumn and winter, deciduous trees from temperate forests need to store different nutrients that will be used for the plant growth during the following spring. Storaging nutrients in leaves require too much energy and constant photosynthetic activity, which might be very difficult for the plant to support during these colder seasons. To confront this situation, these species have developed some strategies such as leaves senescence. The tree stops supplying water and nutrients to the leaves, so these last ones stop producing chlorophyll. When this molecule is completely lost, other pigments that were masked by chlorophyll, show up. Before senescence occurs, pigments such as carotenoid, anthocyanin, or pheophytin reveal yellow, orange, red, purple, and brown tones, which are the characteristic autumn colors. Example: maple and elm
- Angiosperm characterize for their reproductive strategy, producing flowers and fruits, and dispersing by their seeds. These last ones are located in an ovary (in the fruit). These species attract pollinizers through the flower characteristics and reward and attract animals with their fruits, guaranteeing seeds dispersion. Example: maple and mango
- Gymnosperm does not develop flowers nor fruits. They have naked seeds on the surface of scams or leaves. Seeds frequently develop in pine cones, which are specialized branches. Example: Pine, cedar
- Conifer belongs to the Gymnosperm.
Answer: B). fertilization, diploid
Explanation: During fertilization, the sperm cell (a gamete) fuses with an ovum or egg (a gamete) to form a zygote. Each of the gametes have haploid number of chromosomes (23 chromosomes) and they fuse to produce a zygote with a diploid number (46 i.e., 23 pairs) of chromosomes.