Answer:
68
Step-by-step explanation:
Any function is evaluated by putting the argument value where the variable is, then doing the arithmetic. When the argument is another function value, that function value is evaluated first.
__
<h3>f∘g</h3>
The "o" in (fog) is a stand-in for the "ring operator" (∘) which is the operator used to signify a composition. A composition is evaluated right-to-left. That means (f∘g)(x) ≡ f(g(x)). The value of g(x) is found first, and is operated on by the function f.
Writing the composition in the form f(g(x)) lets you identify the layers of parentheses. As with any expression evaluation, the Order of Operations applies. It tells you to evaluate the expression in the innermost parentheses and work your way out.
<h3>g(-2)</h3>
To evaluate (f∘g)(-2) = f(g(-2)), we must first evaluate g(-2). That is ...
g(x) = 5x +4
g(-2) = 5(-2) +4 = -10 +4 = -6 . . . . . put -2 where x is, do the math
<h3>f(g(-2))</h3>
Now that we know g(-2) = -6, we know this expression is ...
f(-6) = 8 -10(-6) = 8 +60 = 68 . . . . . substitute for x in 8-10x
Then the value we're looking for is ...
(f∘g)(-2) = 68
Answer:
C. 16
Step-by-step explanation:
240/15
Step one: 10x15= 150
240-150= 90
Partial quotient: 10
Step two: 6x15= 90
90-90= 0
Partial quotient: 6
Step 3: 10+6= 16
Answer check: 240/15= 16
Answer:
Step-by-step explanation:
6
Flip your chicken strips! hadalpealic - -6 km and dp
Answer:
The solution of system of equation is (-2,0)
Step-by-step explanation:
Given system of equation are
Equation 1 : 2x+y=(-4)
Equation 2 : y+
x=(-1)
To plot the equation of line, we need at least two points
For Equation 1 : 2x+y=(-4)
Let x=0
2x+y=(-4)
2(0)+y=(-4)
y=(-4)
Let x=1
2x+y=(-4)
2(1)+y=(-4)
y=(-6)
Therefore,
The required points for equation is (0,-4) and (1,-6)
For Equation 2 : y+
x=(-1)
Let x=0
y+
x=(-1)
y+
(0)=(-1)
y=(-1)
Let x=2
y+
x=(-1)
y+
(2)=(-1)
y=(-2)
The required points for equation is (0,-1) and (2,-2)
Now, plot the graph using this points
From the graph,
The red line is equation 1 and blue line is equation 2
Since. The point of intersection is solution of system of equations
The solution of system of equation is (-2,0)