Answer:
both of the questions are examples of convenience samples
Step-by-step explanation:
A voluntary response would be where the people get to choose to respond to the survey. In both of these cases, teachers are specifically asking for their students opinions.
The requirement is that every element in the domain must be connected to one - and one only - element in the codomain.
A classic visualization consists of two sets, filled with dots. Each dot in the domain must be the start of an arrow, pointing to a dot in the codomain.
So, the two things can't can't happen is that you don't have any arrow starting from a point in the domain, i.e. the function is not defined for that element, or that multiple arrows start from the same points.
But as long as an arrow start from each element in the domain, you have a function. It may happen that two different arrow point to the same element in the codomain - that's ok, the relation is still a function, but it's not injective; or it can happen that some points in the codomain aren't pointed by any arrow - you still have a function, except it's not surjective.
Answer:
28
Step-by-step explanation:
cause
Answer:

Step-by-step explanation:
<u>Linear Combination Of Vectors
</u>
One vector
is a linear combination of
and
if there are two scalars
such as

In our case, all the vectors are given in
but there are only two possible components for the linear combination. This indicates that only two conditions can be used to determine both scalars, and the other condition must be satisfied once the scalars are found.
We have

We set the equation

Multiplying both scalars by the vectors

Equating each coordinate, we get



Adding the first and the third equations:


Replacing in the first equation



We must test if those values make the second equation become an identity

The second equation complies with the values of
and
, so the solution is

Answer:
(-3,0) = x and (0,4) = y
Step-by-step explanation: