Answer:-1/32
Step-by-step explanation:
First term=a=1024
Common ratio=r=-512/1024
r=-1/2
Using them formula
Tn=a x r^(n-1)
T16=1024 x (-1/2)^(16-1)
T16=1024 x (-1/2)^15
T16=1024 x -1/32768
T16=-1024/32768
T16=-1/32
Answer:

Step-by-step explanation:
The surface area of a square pyramid is the sum of the area of the squared base + 4 times the area of each triangular face, therefore:

where:
is the area of the base, where
L is the length of the base
is the area of each triangular face, where
h is the height of the face
Substituting,

For the model in this problem,
L = 12
h = 8
Therefore, the surface area here is:

Answer:
Step-by-step explanation:
hello : here is a solution
![\bf \begin{array}{lllll} round(x)&\boxed{1}&2&3&\boxed{4}\\\\ wrestlers[f(x)]&\boxed{64}&32&18&\boxed{9} \end{array} \\\\\\ slope = {{ m}}= \cfrac{rise}{run} \implies \cfrac{{{ f(x_2)}}-{{ f(x_1)}}}{{{ x_2}}-{{ x_1}}}\impliedby \begin{array}{llll} average\ rate\\ of\ change \end{array}\\\\ -------------------------------\\\\ f(x)= \qquad \begin{cases} x_1=1\\ x_2=4 \end{cases}\implies \cfrac{f(4)-f(1)}{4-1}\implies \cfrac{9-64}{4-1}\implies \cfrac{-55}{3}](https://tex.z-dn.net/?f=%5Cbf%20%5Cbegin%7Barray%7D%7Blllll%7D%0Around%28x%29%26%5Cboxed%7B1%7D%262%263%26%5Cboxed%7B4%7D%5C%5C%5C%5C%0Awrestlers%5Bf%28x%29%5D%26%5Cboxed%7B64%7D%2632%2618%26%5Cboxed%7B9%7D%0A%5Cend%7Barray%7D%0A%5C%5C%5C%5C%5C%5C%0Aslope%20%3D%20%7B%7B%20m%7D%7D%3D%20%5Ccfrac%7Brise%7D%7Brun%7D%20%5Cimplies%20%0A%5Ccfrac%7B%7B%7B%20f%28x_2%29%7D%7D-%7B%7B%20f%28x_1%29%7D%7D%7D%7B%7B%7B%20x_2%7D%7D-%7B%7B%20x_1%7D%7D%7D%5Cimpliedby%20%0A%5Cbegin%7Barray%7D%7Bllll%7D%0Aaverage%5C%20rate%5C%5C%0Aof%5C%20change%0A%5Cend%7Barray%7D%5C%5C%5C%5C%0A-------------------------------%5C%5C%5C%5C%0Af%28x%29%3D%20%20%20%5Cqquad%20%0A%5Cbegin%7Bcases%7D%0Ax_1%3D1%5C%5C%0Ax_2%3D4%0A%5Cend%7Bcases%7D%5Cimplies%20%5Ccfrac%7Bf%284%29-f%281%29%7D%7B4-1%7D%5Cimplies%20%5Ccfrac%7B9-64%7D%7B4-1%7D%5Cimplies%20%5Ccfrac%7B-55%7D%7B3%7D)
55 over 3, or 55 wrestlers for every 3 rounds, but the wrestlers value is negative, thus 55 "less" wrestlers for every 3 rounds on average.