Using limits, it is found that the infinite sequence converges, as the limit does not go to infinity.
<h3>How do we verify if a sequence converges of diverges?</h3>
Suppose an infinity sequence defined by:

Then we have to calculate the following limit:

If the <u>limit goes to infinity</u>, the sequence diverges, otherwise it converges.
In this problem, the function that defines the sequence is:

Hence the limit is:

Hence, the infinite sequence converges, as the limit does not go to infinity.
More can be learned about convergent sequences at brainly.com/question/6635869
#SPJ1
Answer:
x = (y+w)/k
Step-by-step explanation:
xk-w=y
Add w to each side
xk-w+w=y+w
xk = y+w
Divide each side by k
xk/k = (y+w)/k
x = (y+w)/k
6.875 inches, you divide the fraction to get a decimal
Answer:
[-9,∞)
Step-by-step explanation:
Answer:
Step-by-step explanation:1/2 of answer is zero