1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viva [34]
2 years ago
14

The graphs of the quadratic functions f(x) = 6 – 10x2 and g(x) = 8 – (x – 2)2 are provided below. Observe there are TWO lines si

multaneously tangent to both graphs.(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation: (Two decimal places of accuracy.)y = ___ x + ___(b) The other line simultaneously tangent to both graphs has equation:(Two decimal places of accuracy.)y = ___ x + ___
Mathematics
1 answer:
natta225 [31]2 years ago
6 0

Answer:

a) y = 7.74*x + 7.5

b)  y = 1.148*x + 6.036

Step-by-step explanation:

Given:

                                  f(x) = 6 - 10*x^2

                                  g(x) = 8 - (x-2)^2

Find:

(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation

(b) The other line simultaneously tangent to both graphs has equation,

Solution:

- Find the derivatives of the two functions given:

                                f'(x) = -20*x

                                g'(x) = -2*(x-2)

- Since, the derivative of both function depends on the x coordinate. We will choose a point x_o which is common for both the functions f(x) and g(x). Point: ( x_o , g(x_o)) Hence,

                                g'(x_o) = -2*(x_o -2)

- Now compute the gradient of a line tangent to both graphs at point (x_o , g(x_o) ) on g(x) graph and point ( x , f(x) ) on function f(x):

                                m = (g(x_o) - f(x)) / (x_o - x)

                                m = (8 - (x_o-2)^2 - 6 + 10*x^2) / (x_o - x)

                                m = (8 - (x_o^2 - 4*x_o + 4) - 6 + 10*x^2)/(x_o - x)

                                m = ( 8 - x_o^2 + 4*x_o -4 -6 +10*x^2) /(x_o - x)

                                m = ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x)

- Now the gradient of the line computed from a point on each graph m must be equal to the derivatives computed earlier for each function:

                                m = f'(x) = g'(x_o)

- We will develop the first expression:

                                m = f'(x)

                                ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

Eq 1.                          (-2 - x_o^2 + 4*x_o + 10*x^2) = -20*x*x_o + 20*x^2

And,

                              m = g'(x_o)

                              ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

                              -2 - x_o^2 + 4*x_o + 10*x^2 = -2(x_o - 2)(x_o - x)

Eq 2                       -2 - x_o^2 + 4*x_o+ 10*x^2 = -2(x_o^2 - x_o*(x + 2) + 2*x)

- Now subtract the two equations (Eq 1 - Eq 2):

                              -20*x*x_o + 20*x^2 + 2*x_o^2 - 2*x_o*(x + 2) + 4*x = 0

                              -22*x*x_o + 20*x^2 + 2*x_o^2 - 4*x_o + 4*x = 0

- Form factors:       20*x^2 - 20*x*x_o - 2*x*x_o + 2*x_o^2 - 4*x_o + 4*x = 0

                              20*x*(x - x_o) - 2*x_o*(x - x_o) + 4*(x - x_o) = 0

                               (x - x_o)(20*x - 2*x_o + 4) = 0  

                               x = x_o   ,     x_o = 10x + 2    

- For x_o = 10x + 2  ,

                               (g(10*x + 2) - f(x))/(10*x + 2 - x) = -20*x

                                (8 - 100*x^2 - 6 + 10*x^2)/(9*x + 2) = -20*x

                                (-90*x^2 + 2) = -180*x^2 - 40*x

                                90*x^2 + 40*x + 2 = 0  

- Solve the quadratic equation above:

                                 x = -0.0574, -0.387      

- Largest slope is at x = -0.387 where equation of line is:

                                  y - 4.502 = -20*(-0.387)*(x + 0.387)

                                  y = 7.74*x + 7.5          

- Other tangent line:

                                  y - 5.97 = 1.148*(x + 0.0574)

                                  y = 1.148*x + 6.036

You might be interested in
The formula P = 6s gives the formula for the perimeter of a regular hexagon with side length s. What is the perimeter of a regul
masya89 [10]
The answer is letter D, 20.4.
3.4(6)=20.4
3 0
2 years ago
Read 2 more answers
The triangle has side lengths 10cm, 24cm, and 28cm, is it a right triangle? Explain please i dont understand
Nitella [24]

In every right triangle, if you add up the squares of the two
shorter sides, you get the square of the longest side. If you
don't then it's not a right triangle.

10² = 100
24² = 576

100 + 576 = 676

676 is the square of 26. 
It's NOT the square of 28.

So 10 - 24 - 28 is not a right triangle.


8 0
3 years ago
Read 2 more answers
Use an x&y to graph the function below f(x) = - (x+2)^3+1
kenny6666 [7]

Answer: f=26

Step-by-step explanation: x^2+6x^2+12x+7/x= 26

3 0
3 years ago
For the diagram below, which equation is the correct use of the distance formula?
MrMuchimi

Answer:

????

Step-by-step explanation:

Where's the equation? diagram?

8 0
3 years ago
Read 2 more answers
3456
Bumek [7]

idkStep-by-step explanation:

7 0
3 years ago
Other questions:
  • Look at the parallelogram ABCD shown below. The table below shows the steps to prove that if the quadrilateral ABCD is a paralle
    6·1 answer
  • -8v=9-9v solve for v​
    10·2 answers
  • What is the next step for this construction?
    11·1 answer
  • Which table of ordered pairs represents a proportional relationship?
    9·1 answer
  • What is a pure monopoly?
    15·1 answer
  • Please help me!!!!!!
    13·1 answer
  • Fast fat sfast eeeee
    13·2 answers
  • 2-5=x/1.2<br>(please solve this)​
    12·1 answer
  • Use the ten frame to make a
    13·1 answer
  • Which expressions is not equivalent 2x^2+10x+12?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!