1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viva [34]
3 years ago
14

The graphs of the quadratic functions f(x) = 6 – 10x2 and g(x) = 8 – (x – 2)2 are provided below. Observe there are TWO lines si

multaneously tangent to both graphs.(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation: (Two decimal places of accuracy.)y = ___ x + ___(b) The other line simultaneously tangent to both graphs has equation:(Two decimal places of accuracy.)y = ___ x + ___
Mathematics
1 answer:
natta225 [31]3 years ago
6 0

Answer:

a) y = 7.74*x + 7.5

b)  y = 1.148*x + 6.036

Step-by-step explanation:

Given:

                                  f(x) = 6 - 10*x^2

                                  g(x) = 8 - (x-2)^2

Find:

(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation

(b) The other line simultaneously tangent to both graphs has equation,

Solution:

- Find the derivatives of the two functions given:

                                f'(x) = -20*x

                                g'(x) = -2*(x-2)

- Since, the derivative of both function depends on the x coordinate. We will choose a point x_o which is common for both the functions f(x) and g(x). Point: ( x_o , g(x_o)) Hence,

                                g'(x_o) = -2*(x_o -2)

- Now compute the gradient of a line tangent to both graphs at point (x_o , g(x_o) ) on g(x) graph and point ( x , f(x) ) on function f(x):

                                m = (g(x_o) - f(x)) / (x_o - x)

                                m = (8 - (x_o-2)^2 - 6 + 10*x^2) / (x_o - x)

                                m = (8 - (x_o^2 - 4*x_o + 4) - 6 + 10*x^2)/(x_o - x)

                                m = ( 8 - x_o^2 + 4*x_o -4 -6 +10*x^2) /(x_o - x)

                                m = ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x)

- Now the gradient of the line computed from a point on each graph m must be equal to the derivatives computed earlier for each function:

                                m = f'(x) = g'(x_o)

- We will develop the first expression:

                                m = f'(x)

                                ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

Eq 1.                          (-2 - x_o^2 + 4*x_o + 10*x^2) = -20*x*x_o + 20*x^2

And,

                              m = g'(x_o)

                              ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

                              -2 - x_o^2 + 4*x_o + 10*x^2 = -2(x_o - 2)(x_o - x)

Eq 2                       -2 - x_o^2 + 4*x_o+ 10*x^2 = -2(x_o^2 - x_o*(x + 2) + 2*x)

- Now subtract the two equations (Eq 1 - Eq 2):

                              -20*x*x_o + 20*x^2 + 2*x_o^2 - 2*x_o*(x + 2) + 4*x = 0

                              -22*x*x_o + 20*x^2 + 2*x_o^2 - 4*x_o + 4*x = 0

- Form factors:       20*x^2 - 20*x*x_o - 2*x*x_o + 2*x_o^2 - 4*x_o + 4*x = 0

                              20*x*(x - x_o) - 2*x_o*(x - x_o) + 4*(x - x_o) = 0

                               (x - x_o)(20*x - 2*x_o + 4) = 0  

                               x = x_o   ,     x_o = 10x + 2    

- For x_o = 10x + 2  ,

                               (g(10*x + 2) - f(x))/(10*x + 2 - x) = -20*x

                                (8 - 100*x^2 - 6 + 10*x^2)/(9*x + 2) = -20*x

                                (-90*x^2 + 2) = -180*x^2 - 40*x

                                90*x^2 + 40*x + 2 = 0  

- Solve the quadratic equation above:

                                 x = -0.0574, -0.387      

- Largest slope is at x = -0.387 where equation of line is:

                                  y - 4.502 = -20*(-0.387)*(x + 0.387)

                                  y = 7.74*x + 7.5          

- Other tangent line:

                                  y - 5.97 = 1.148*(x + 0.0574)

                                  y = 1.148*x + 6.036

You might be interested in
Write the equation in point-slope form of the line that passes through the given points.
Lera25 [3.4K]

Answer:

y-6=-1/3(x+6)

Step-by-step explanation:

y-y1=m(x-x1)

m=(y2-y1)/(x2-x1)

m=(3-6)/(3-(-6))

m=-3/(3+6)

m=-3/9

simplify

m=-1/3

y-6=-1/3(x-(-6))

y-6=-1/3(x+6)

4 0
3 years ago
The point (1, −1) is on the terminal side of angle θ, in standard position. What are the values of sine, cosine, and tangent of
defon
The abscissa of the ordered pair, that is the x-coordinate, is equal to 1 and the ordinate, the y-coordinate, is equal to -1. In the cartesian plane, this point lies in the fourth (IV) quadrant. The standard position of the angle is that which has one of its side is in the x-axis.

Solve for the hypotenuse of the right triangle formed.
           h = sqrt((-1)² + (1)²) = √2
Below items show the calculation for each of the trigonometric functions.

 sin θ = opposite/hypotenuse = y/h = (-1)/(√2) = -√2/2
 cos  θ = adjacent/hypotenuse = x/h = (1)/√2 = √2/2
tan θ = opposite/adjacent = y/x = -1/1 = -1
7 0
3 years ago
Which rotation transformed FGHI to F'G'H'I
kenny6666 [7]
The answer is a 45 degree rotation Clockwise. Hope that helps! :)
3 0
3 years ago
Read 2 more answers
How do I solve n x 43.50= 435
Tems11 [23]
How do I solve n x 43.50 = 435 To solve this given expression, there various ways. We can utilize simply by recognizing this as an algebraic equation.
The values then become
1. 43. 50 x n = 435
2. 43.50n = 435
3. N = 435 / 43.50
4. N = 10
Thus, n is 10.



4 0
3 years ago
(3, 5) and (-1, -2) in slope-intercept form
stepladder [879]
Answer: y=7/4x - 1/4
Explanation:

8 0
3 years ago
Other questions:
  • The BMI equation is:
    15·1 answer
  • Solve the triangle if a=3, b=4, and c=55 degrees
    7·1 answer
  • How do you know how to solve algebraic equations in the correct order?
    10·1 answer
  • Can someone help pls 20 points
    11·2 answers
  • A horse trot in a circle around it's trainer at the end of a 31 foot long rope. Find the area of the circle that is swept out. R
    14·1 answer
  • Point s and point t are located at -6, 13 and 8, 13 on the coordinate plane what is the distance between the two points
    9·1 answer
  • Pls help me this is due in 6 minutes
    9·1 answer
  • Plssss help explain this
    10·1 answer
  • Solve and graph the inequality 16x<-64
    6·2 answers
  • One cubic meter represents a cube shape that measures 1 meter in all three dimensions. how long is each side in centimeters?
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!