1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
viva [34]
3 years ago
14

The graphs of the quadratic functions f(x) = 6 – 10x2 and g(x) = 8 – (x – 2)2 are provided below. Observe there are TWO lines si

multaneously tangent to both graphs.(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation: (Two decimal places of accuracy.)y = ___ x + ___(b) The other line simultaneously tangent to both graphs has equation:(Two decimal places of accuracy.)y = ___ x + ___
Mathematics
1 answer:
natta225 [31]3 years ago
6 0

Answer:

a) y = 7.74*x + 7.5

b)  y = 1.148*x + 6.036

Step-by-step explanation:

Given:

                                  f(x) = 6 - 10*x^2

                                  g(x) = 8 - (x-2)^2

Find:

(a) The line simultaneously tangent to both graphs having the LARGEST slope has equation

(b) The other line simultaneously tangent to both graphs has equation,

Solution:

- Find the derivatives of the two functions given:

                                f'(x) = -20*x

                                g'(x) = -2*(x-2)

- Since, the derivative of both function depends on the x coordinate. We will choose a point x_o which is common for both the functions f(x) and g(x). Point: ( x_o , g(x_o)) Hence,

                                g'(x_o) = -2*(x_o -2)

- Now compute the gradient of a line tangent to both graphs at point (x_o , g(x_o) ) on g(x) graph and point ( x , f(x) ) on function f(x):

                                m = (g(x_o) - f(x)) / (x_o - x)

                                m = (8 - (x_o-2)^2 - 6 + 10*x^2) / (x_o - x)

                                m = (8 - (x_o^2 - 4*x_o + 4) - 6 + 10*x^2)/(x_o - x)

                                m = ( 8 - x_o^2 + 4*x_o -4 -6 +10*x^2) /(x_o - x)

                                m = ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x)

- Now the gradient of the line computed from a point on each graph m must be equal to the derivatives computed earlier for each function:

                                m = f'(x) = g'(x_o)

- We will develop the first expression:

                                m = f'(x)

                                ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

Eq 1.                          (-2 - x_o^2 + 4*x_o + 10*x^2) = -20*x*x_o + 20*x^2

And,

                              m = g'(x_o)

                              ( -2 - x_o^2 + 4*x_o + 10*x^2) /(x_o - x) = -20*x

                              -2 - x_o^2 + 4*x_o + 10*x^2 = -2(x_o - 2)(x_o - x)

Eq 2                       -2 - x_o^2 + 4*x_o+ 10*x^2 = -2(x_o^2 - x_o*(x + 2) + 2*x)

- Now subtract the two equations (Eq 1 - Eq 2):

                              -20*x*x_o + 20*x^2 + 2*x_o^2 - 2*x_o*(x + 2) + 4*x = 0

                              -22*x*x_o + 20*x^2 + 2*x_o^2 - 4*x_o + 4*x = 0

- Form factors:       20*x^2 - 20*x*x_o - 2*x*x_o + 2*x_o^2 - 4*x_o + 4*x = 0

                              20*x*(x - x_o) - 2*x_o*(x - x_o) + 4*(x - x_o) = 0

                               (x - x_o)(20*x - 2*x_o + 4) = 0  

                               x = x_o   ,     x_o = 10x + 2    

- For x_o = 10x + 2  ,

                               (g(10*x + 2) - f(x))/(10*x + 2 - x) = -20*x

                                (8 - 100*x^2 - 6 + 10*x^2)/(9*x + 2) = -20*x

                                (-90*x^2 + 2) = -180*x^2 - 40*x

                                90*x^2 + 40*x + 2 = 0  

- Solve the quadratic equation above:

                                 x = -0.0574, -0.387      

- Largest slope is at x = -0.387 where equation of line is:

                                  y - 4.502 = -20*(-0.387)*(x + 0.387)

                                  y = 7.74*x + 7.5          

- Other tangent line:

                                  y - 5.97 = 1.148*(x + 0.0574)

                                  y = 1.148*x + 6.036

You might be interested in
The perimeter of a rectangle is 141 feet, and the length is twice the width. What are the dimensions of the rectangle?
JulijaS [17]
Widths = 23.5feet
Lengths = 47feet
23.5 + 23.5 + 47 + 47 = 141
3 0
3 years ago
How is the Pythagorean theorem related to the distance<br> formula?
Eddi Din [679]

Answer:

The distance formula is a formalization of the Pythagorean Theorem using (x,y) . They are the same thing (but the distance formula is for working out the distance between two points and Pythagoras theorem is for working out the missing length in a right-angled triangle) in two different contexts.

Step-by-step explanation:

6 0
3 years ago
Read 2 more answers
Multiple people counted the number of spectators at a high school swim meet. All counts were between 208 and 217, inclusive. Ass
icang [17]
Its 40% because its just the fact ratio you know
4 0
3 years ago
The figure is composed of a square with an equilateral triangle on top of it. If the area of the square is 16 square inches. Wha
spayn [35]

Answer:

C 30

Step-by-step explanation:

3 0
2 years ago
The answer because it is hard
notka56 [123]
Follow me answer= -77
6 0
3 years ago
Read 2 more answers
Other questions:
  • Tina has been dieting for a total of 13 weeks. She lost 3 pounds on the first week of her diet, but gained back a pound on the s
    8·1 answer
  • A dog kennel uses 90 lb of dog food per day. How many pounds are used in a year?
    12·2 answers
  • -1/2 + ( 3/4 x 4/9)
    15·1 answer
  • -5= s<br> —<br> 18<br> Someone help please I’m stuck
    13·1 answer
  • Enter the ratio as a fraction in lowest terms2 ft to 54 in.
    11·1 answer
  • Find the value of y for the given value of x for the equation: y = x - 8; x =<br> 5*
    15·1 answer
  • 5 divided by -5 is what?
    11·2 answers
  • 4:n=6:9 how do you get it?
    9·1 answer
  • Find the perimeter of the figure below.
    12·1 answer
  • If f(x) = x2, find the inverse of f.
    12·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!