Answer:
a. 12 feet b. 12 feet 0.5 inches c. 8.33 %
Step-by-step explanation:
a. How far out horizontally on the ground will it protrude from the building? 
Since the rise to run ratio is 1:12 and the building is 12 inches off the ground, let x be the horizontal distance the ramp protrudes. 
So, by ratios rise/run = 1/12 = 12/x
1/12 = 12/x
x = 12 × 12 
x = 144 inches 
Since 12 inches = 1 foot, 144 inches = 144 × 1 inch = 144 × 1 foot/12 inches = 12 feet
b. How long should the ramp be?
The length of the ramp, L is gotten from Pythagoras' theorem since the ramp is a right-angled triangle with sides 12 inches and 144 inches respectively.
So, L = √(12² + 144²) 
= √[12² + (12² × 12²)] 
= 12√(1 + 144) 
= 12√145 
= 12 × 12.042 
= 144.5 inches
Since 12 inches = 1 foot, 144.5 inches = 144 × 1 inch + 0.5 inches = 144 × 1 foot/12 inches + 0.5 inches = 12 feet 0.5 inches
c. What percent grade is the ramp?
The percentage grade of the ramp = rise/run × 100 % 
= 12 inches/144 inches × 100 % 
= 1/12 × 100 % 
= 0.0833 × 100 % 
= 8.33 %
 
        
             
        
        
        
Answer:
200
Step-by-step explanation:
if x is the original number:

 
        
                    
             
        
        
        
In:ft 
3:4
x:24--- to find x, multiply each side by 6, because 24/4=6
3*6:24
18:24
The length of the object is 18 in. I think this is what your asking, but I'm not sure because I didn't quite understand the wording on the problem.