Answer:
x-√6
Step-by-step explanation:
Non-integer powers of the variable disqualifies the expression from being a polynomial. √x -6 has x to the 1/2 power, so that expression is not a polynomial. Polynomials may have any real or complex, rational or irrational coefficients. (We usually study only polynomials with real coefficients.)
x-√6 is a polynomial
Answer:
cos(θ)
Step-by-step explanation:
Para una función f(x), la derivada es el límite de
h
f(x+h)−f(x)
, ya que h va a 0, si ese límite existe.
dθ
d
(sin(θ))=(
h→0
lim
h
sin(θ+h)−sin(θ)
)
Usa la fórmula de suma para el seno.
h→0
lim
h
sin(h+θ)−sin(θ)
Simplifica sin(θ).
h→0
lim
h
sin(θ)(cos(h)−1)+cos(θ)sin(h)
Reescribe el límite.
(
h→0
lim
sin(θ))(
h→0
lim
h
cos(h)−1
)+(
h→0
lim
cos(θ))(
h→0
lim
h
sin(h)
)
Usa el hecho de que θ es una constante al calcular límites, ya que h va a 0.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)(
h→0
lim
h
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
sin(θ)(
h→0
lim
h
cos(h)−1
)+cos(θ)
Para calcular el límite lim
h→0
h
cos(h)−1
, primero multiplique el numerador y denominador por cos(h)+1.
(
h→0
lim
h
cos(h)−1
)=(
h→0
lim
h(cos(h)+1)
(cos(h)−1)(cos(h)+1)
)
Multiplica cos(h)+1 por cos(h)−1.
h→0
lim
h(cos(h)+1)
(cos(h))
2
−1
Usa la identidad pitagórica.
h→0
lim
−
h(cos(h)+1)
(sin(h))
2
Reescribe el límite.
(
h→0
lim
−
h
sin(h)
)(
h→0
lim
cos(h)+1
sin(h)
)
El límite lim
θ→0
θ
sin(θ)
es 1.
−(
h→0
lim
cos(h)+1
sin(h)
)
Usa el hecho de que
cos(h)+1
sin(h)
es un valor continuo en 0.
(
h→0
lim
cos(h)+1
sin(h)
)=0
Sustituye el valor 0 en la expresión sin(θ)(lim
h→0
h
cos(h)−1
)+cos(θ).
cos(θ)
Answer:
Step-by-step explanation:
Well 6 to the second power is when you multiply 6 x 6 = 36
And ab= -320
The last one since there are no solutions
The union and intersection of the sets is given as { -4, -9 , 19} and { -4} respectively.
<h3>What is a set?</h3>
A set is simply a mathematical model for a collection of different things which could be elements or members.
Union of sets represented with '∪' is the combination of two sets without repetition
Intersection of sets represented with '∩' is the sum of elements common between the.
From the expression given, we have;
[-9,-4] U (-4, 19)
= { -4, -9 , 19}
[-9,-4] U (-4, 19)
= { -4}
Thus, the union and intersection of the sets is given as { -4, -9 , 19} and { -4} respectively.
Learn more about sets here:
brainly.com/question/2166579
#SPJ1