The law of an object moving with constant acceleration is

Where
is space,
is time,
is the initial position,
is the initial velocity and
is the acceleration.
In this case, if we choose a reference grid with the vertical axis pointing upwards, the acceleration of gravity will point downwards (and thus be negative). The initial position is zero, because the rocket is on the ground, and the initial velocity is 100 (positive because pointing upwards).
So, its law is

(I changed
for
since the rocket is moving vertically, so its position is actually its height. Also, g is the acceleration due to gravity).
The rocket hits the ground if its height is zero, so if we set
we have

Solving for t, we have either t=0, or

The solution t=0 means that at the beginning the rocket is on the ground. So, we're interested in the other solution. Considering that g is about 32.2 feet/s^2, we have

Answer:
The probability of finding an average in excess of 4.3 ounces of this ingredient from 100 randomly inspected 1-gallon samples of regular unleaded gasoline = P(x > 4.3) = 0.00621
Step-by-step explanation:
This is a normal distribution problem
The mean of the sample = The population mean
μₓ = μ = 4 ounces
But the standard deviation of the sample is related to the standard deviation of the population through the relation
σₓ = σ/√n
where n = Sample size = 100
σₓ = 1.2/√100
σₓ = 0.12
The probability of finding an average in excess of 4.3 ounces of this ingredient from 100 randomly inspected 1-gallon samples of regular unleaded gasoline = P(x > 4.3)
To do this, we first normalize/standardize the 4.3 ounces
The standardized score for any value is the value minus the mean then divided by the standard deviation.
z = (x - μ)/σ = (4.3 - 4)/0.12 = 2.5
To determine the probability of finding an average in excess of 4.3 ounces of this ingredient from 100 randomly inspected 1-gallon samples of regular unleaded gasoline = P(x > 4.3) = P(z > 2.5)
We'll use data from the normal probability table for these probabilities
P(x > 4.3) = P(z > 2.5) = 1 - P(z ≤ 2.5) = 1 - 0.99379 = 0.00621
Answer:
the answer is 24
Step-by-step explanation:
68-38 = 24
Answer:
The correct answer is "1287.02 ft"
Step-by-step explanation:
Given that:
T = 1200 ft
PI = 145+00
= 29.86°
or,
= 0.5211 rad
As we know,
The radius of curve is:
⇒ 



The length of curve will be:
⇒ 


hence,
Station PT will be:
= 
= 
= 
The answer you’re looking for is a yes the domain value five corresponds to two range values -8 and five