1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
natima [27]
3 years ago
14

What is the greatest common factor of 42 ab 35ab4 and 42ab42

Mathematics
1 answer:
Lana71 [14]3 years ago
6 0

Answer:

7

Step-by-step explanation:

You might be interested in
Are these 2 ratios equivalent ratios?
Eva8 [605]
These ratios are equivalent because 7 and 8 can be multiplied by 6 to get 42 and 48.
3 0
3 years ago
Read 2 more answers
Factor the expression using<br>the greatest common factor:<br>27x + 45​
Ghella [55]

Answer:

The GCF should be 9

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
What is the answer to the question. Solve for x
slega [8]

Answer:

Answer:

x=\frac{75}2

Step-by-step explanation:

Give letters, as in the attached image.

The triangles ABE and CDE are similars (AAA). In particular AE:CE=BE:DE \rightarrow 46:30=(x+20):x \rightarrow 46x=30(x+20) \rightarrow 23x=15x+300 \rightarrow 8x=300\rightarrow  x=\frac{75}2

5 0
2 years ago
I really need help tyy
emmainna [20.7K]
Find the greatest common factor (gcf) in each grade between the girls and boys
in 6th grade the gcf is 8
64/8=8  72/8=9
the largest number of groups that can be made equally would be 8 groups of 8 girls and 8 boys
Hope this helps!!
6 0
3 years ago
Please help me solve this problem ASAP
DiKsa [7]

\bold{\huge{\blue{\underline{ Solution }}}}

<h3><u>Given </u><u>:</u><u>-</u></h3>

  • <u>The </u><u>right </u><u>angled </u><u>below </u><u>is </u><u>formed </u><u>by </u><u>3</u><u> </u><u>squares </u><u>A</u><u>, </u><u> </u><u>B </u><u>and </u><u>C</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>B</u><u> </u><u>has </u><u>an </u><u>area </u><u>of </u><u>1</u><u>4</u><u>4</u><u> </u><u>inches </u><u>²</u>
  • <u>The </u><u>area </u><u>of </u><u>square </u><u>C </u><u>has </u><u>an </u><u>of </u><u>1</u><u>6</u><u>9</u><u> </u><u>inches </u><u>²</u>

<h3><u>To </u><u>Find </u><u>:</u><u>-</u></h3>

  • <u>We </u><u>have </u><u>to </u><u>find </u><u>the </u><u>area </u><u>of </u><u>square </u><u>A</u><u>? </u>

<h3><u>Let's </u><u>Begin </u><u>:</u><u>-</u><u> </u></h3>

The right angled triangle is formed by 3 squares

<u>We </u><u>have</u><u>, </u>

  • Area of square B is 144 inches²
  • Area of square C is 169 inches²

<u>We </u><u>know </u><u>that</u><u>, </u>

\bold{ Area \: of \: square =  Side × Side }

Let the side of square B be x

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 144 =  x × x }

\sf{ 144 =  x² }

\sf{ x = √144}

\bold{\red{ x = 12\: inches }}

Thus, The dimension of square B is 12 inches

<h3><u>Now, </u></h3>

Area of square C = 169 inches

Let the side of square C be y

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ 169 =  y × y }

\sf{ 169 =  y² }

\sf{ y = √169}

\bold{\green{ y = 13\: inches }}

Thus, The dimension of square C is 13 inches.

<h3><u>Now, </u></h3>

It is mentioned in the question that, the right angled triangle is formed by 3 squares

The dimensions of square be is x and y

Let the dimensions of square A be z

<h3><u>Therefore</u><u>, </u><u>By </u><u>using </u><u>Pythagoras </u><u>theorem</u><u>, </u></h3>

  • <u>The </u><u>sum </u><u>of </u><u>squares </u><u>of </u><u>base </u><u>and </u><u>perpendicular </u><u>height </u><u>equal </u><u>to </u><u>the </u><u>square </u><u>of </u><u>hypotenuse </u>

<u>That </u><u>is</u><u>, </u>

\bold{\pink{ (Perpendicular)² + (Base)² = (Hypotenuse)² }}

<u>Here</u><u>, </u>

  • Base = x = 12 inches
  • Perpendicular = z
  • Hypotenuse = y = 13 inches

<u>Subsitute </u><u>the </u><u>required </u><u>values</u><u>, </u>

\sf{ (z)² + (x)² = (y)² }

\sf{ (z)² + (12)² = (169)² }

\sf{ (z)² + 144 = 169}

\sf{ (z)² = 169 - 144 }

\sf{ (z)² = 25}

\bold{\blue{ z = 5 }}

Thus, The dimensions of square A is 5 inches

<h3><u>Therefore</u><u>,</u></h3>

Area of square

\sf{ = Side × Side }

\sf{ = 5 × 5  }

\bold{\orange{ = 25\: inches }}

Hence, The area of square A is 25 inches.

6 0
2 years ago
Other questions:
  • Solve for x.<br> 11 = 11x
    5·2 answers
  • Derek just purchased a new cube shaped fish tank.it holds 13,824 inches3 of water. What is the length of one of the sides?please
    8·1 answer
  • How many times greater is the value of the 5 in 650,700 than the value of the 5 in 67050
    14·2 answers
  • Need help asap solve for x!
    9·1 answer
  • A projectile is fired into the air, and it follows the parabolic path shown in the drawing, landing on the right. there is no ai
    5·1 answer
  • Write the population of Raleigh in expanded form and word form
    13·1 answer
  • A) 11√7-18√7+6√7<br>b) (-5√3)•(6√7)<br>c) (48√35):(6-√7)<br>d) √5² <br>e) (-2√3)²<br>f) (√13)-2​
    5·1 answer
  • 4(2y+3)-2*2. Y=3 <br> Pls help
    13·2 answers
  • Hey guys! a friend and I are confused and could really use the help. could you explain why? thanks!
    15·2 answers
  • 6) There are 350 calories in
    15·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!