Answer:
<h2>Gold</h2>
Explanation:
Assume Gold trait =P ,
Purple= p,
Given:
Gold (P) is dominant over purple(p), so P is dominant over p.
If the bear is homozygous pp ( recessive) then bear will look purple,
If the bear is heterozygous Pp, then bear will look gold,
If the bear is homozygous DD( dominant), then the bear will look GOLD,
Answer:
The Kinetic Theory of Matter
The states that all of the particles that make up matter are constantly in motion. As a result, all particles in matter have kinetic energy. The kinetic theory of matter helps explain the different states of matter—solid, liquid, and gas.
Explanation:
sdfghju7y6tredcvbnjmki8u7ytg
Answer:
The options
a. New combinations of genes yielding genotypes of greater fitness
b. Few heterozygotes because of underdominance
c. Frequency-dependent selection, leading to fluctuations in fitness
d. Heterozygotes with greater fitness, owing to overdominance
e. A random assortment of genotypes because of genetic drift
The CORRECT ANSWER IS b.
b. Few heterozygotes because of under dominance
Explanation:
In genetics, underdominance (at times called "negative overdominance") is the opposite of overdominance.
It is the selection against the heterozygote, that leads to disruptive selection and divergent genotypes. It occurs in cases of inferior and reduced fitness (As in our case study, it is the different chromosomal fusions and inversions)
of the heterozygotic genotype to the dominant or recessive homozygotic genotype. It is unstable as it causes fixation of either allele.
Another example is the African butterfly species Pseudacraea eurytus, which makes use of Batesian mimicry to avoid predation. This species carries two alleles that gives a coloration that is alike to a different local butterfly species that is harmful to its predator. The butterflies who are heterozygous for this trait are observed to be intermediate in coloration and thus encounter an higher risk of predation and a decrease in the total fitness.