Answer:
y = x*sqrt(Cx - 1)
Step-by-step explanation:
Given:
dy / dx = (x^2 + 5y^2) / 2xy
Find:
Solve the given ODE by using appropriate substitution.
Solution:
- Rewrite the given ODE:
dy/dx = 0.5(x/y) + 2.5(y/x)
- use substitution y = x*v(x)
dy/dx = v + x*dv/dx
- Combine the two equations:
v + x*dv/dx = 0.5*(1/v) + 2.5*v
x*dv/dx = 0.5*(1/v) + 1.5*v
x*dv/dx = (v^2 + 1) / 2v
-Separate variables:
(2v.dv / (v^2 + 1) = dx / x
- Integrate both sides:
Ln (v^2 + 1) = Ln(x) + C
v^2 + 1 = Cx
v = sqrt(Cx - 1)
- Back substitution:
(y/x) = sqrt(Cx - 1)
y = x*sqrt(Cx - 1)
Answer:
i think it is 234 i am not sure
Step-by-step explanation:
Distribute each term in one parenthesis to the other terms in the other parenthesis.
(x - 2) (2x + 3)
First, distribute x. When distributing, multiply
x(2x) = 2x²
x(3) = 3x
Next, distribute the other term, -2. Remember to change the signs.
-2(2x) = -4x
-2(3) = -6
-------------------------------------------------------------------------------------------------------------------
2x² + 3x - 4x - 6
Combine like terms
3x - 4x = -x
2x² - x - 6
-------------------------------------------------------------------------------------------------------------------
2x² - x - 6 is your answer
hope this helps
We have an triangle:
base=4 in
height=3 in,
This triangle can be dividided into two equal triangles, we need calculate the hypotenuse.
leg₁=4 in/2=2 in
leg₂=3 in
Pythagoras law:
hypotenuse²=leg₁²+leg₂²
hypotenuse²=(2 in)²+(3 in)²
hypotenuse²=4 in²+9 in²
hypotenuse²=13 in²
hypotenuse=√13 in.
Now, we can find the surface area.
Surface area=2 *(rectangle area)+base area + 2(triangle area)
rectangle area=10 in x √13 in=10√13 in²
base area=10 in x 4 in=40 in²
Triangle area=(4 in x 3 in)/2=6 in²
Surface area=2(10√13 in²)+40 in²+2(6 in²)=(20√13+52) in²≈124.11 in²
Answer: 124.11 in²
Six hundred and eighty thousand and ten.