1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Masteriza [31]
2 years ago
6

Write a quadratic function f whose only zero is 7

Mathematics
1 answer:
Snezhnost [94]2 years ago
5 0

well, we know is a quadratic, namely of degree 2, so it has two solutions and namely two factors, and whose only zero is 7, well, we can do that by giving that only zero a multiplicity of 2, so we get two of the same zero.

\begin{cases} x=7\implies &x-7=0\\ x=7\implies &x-7=0 \end{cases}\qquad \implies \qquad \begin{array}{llll} \stackrel{\textit{multiplicity of 2}}{(x-7)(x-7)}=\stackrel{0}{y} \\\\\\ x^2-14x+49=y \end{array}

You might be interested in
Solve the equation 3x-4=8-x
solmaris [256]

Answer:

x=3

Step-by-step explanation:

<em>3</em><em>x</em><em>-</em><em>4</em><em>=</em><em>8</em><em>-</em><em>x</em><em>(</em><em>Group</em><em> </em><em>like</em><em> </em><em>terms</em><em>)</em>

<em>3</em><em>x</em><em>+</em><em>x</em><em>=</em><em>8</em><em>+</em><em>4</em><em>(</em><em>Add</em><em> </em><em>both</em><em> </em><em>sides</em><em>)</em>

<em>4</em><em>x</em><em>=</em><em>1</em><em>2</em><em>(</em><em>After</em><em> </em><em>adding</em><em> </em><em>you</em><em> </em><em>will</em><em> </em><em>proceed </em><em>to</em><em> </em><em>divide</em><em> </em><em>both</em><em> </em><em>sides</em><em> </em><em>by</em><em> </em><em>4</em><em>)</em>

<em>x</em><em>=</em><em>3</em><em>(</em><em>x</em><em> </em><em>is</em><em> </em><em>3</em><em> </em><em>because</em><em> </em><em>4</em><em> </em><em>can</em><em> </em><em>divide</em><em> </em><em>1</em><em>2</em><em> </em><em>3</em><em> </em><em>times</em><em> </em><em>that's</em><em> </em><em>why</em><em> </em><em>we</em><em> </em><em>have</em><em> </em><em>x</em><em> </em><em>as</em><em> </em><em>equal</em><em> </em><em>to</em><em> </em><em>3</em><em>)</em>

5 0
3 years ago
Find the period of the graph
olya-2409 [2.1K]

Answer:

240 degrees

Step-by-step explanation:

Looking at the graph we can see that the first peak is at -30 degrees and the second peak is at 210 degrees.

210 - (-30) = 210 + 30 = 240

5 0
3 years ago
Which statements about residuals are true for the least-squares regression line? I. A random scattering of residuals indicates t
Daniel [21]

Answer:

II. The sum of the residuals is always 0.

Step-by-step explanation:

A least squares regression line is a standard technique in regression analysis used to make the vertical distance obtained from the data points running to the regression line to become very minimal or as small as possible.

For any least-squares regression line, the sum of the residuals is always zero.

Basically, residuals are used to measure or determine whether or not the line of regression is a good fit or match for the data by subtracting the difference between them i.e the predicted y value and the actual y value, for the x value respectively.

Hence, the statement about residuals which is true for the least-squares regression line is that the sum of the residuals is always zero (0).

7 0
3 years ago
How can i differentiate this equation?
Dmitry_Shevchenko [17]

\bf y=\cfrac{2x^2-10x}{\sqrt{x}}\implies y=\cfrac{2x^2-10x}{x^{\frac{1}{2}}} \\\\\\ \cfrac{dy}{dx}=\stackrel{\textit{quotient rule}}{\cfrac{(4x-10)(\sqrt{x})~~-~~(2x^2-10x)\left( \frac{1}{2}x^{-\frac{1}{2}} \right)}{\left( x^{\frac{1}{2}} \right)^2}} \\\\\\ \cfrac{dy}{dx}=\cfrac{(4x-10)(\sqrt{x})~~-~~(2x^2-10x)\left( \frac{1}{2\sqrt{x}} \right)}{\left( x^{\frac{1}{2}} \right)^2} \\\\\\ \cfrac{dy}{dx}=\cfrac{(4x-10)(\sqrt{x})~~-~~\left( \frac{2x^2-10x}{2\sqrt{x}} \right)}{x}


\bf\cfrac{dy}{dx}=\cfrac{(4x-10)(\sqrt{x})~~-~~\left( \frac{2x^2-10x}{2\sqrt{x}} \right)}{x} \\\\\\ \cfrac{dy}{dx}=\cfrac{ \frac{(4x-10)(\sqrt{x})(2\sqrt{x})~~-~~(2x^2-10x)}{2\sqrt{x}}}{x} \\\\\\ \cfrac{dy}{dx}=\cfrac{(4x-10)(\sqrt{x})(2\sqrt{x})~~-~~(2x^2-10x)}{2x\sqrt{x}}


\bf \cfrac{dy}{dx}=\cfrac{(4x-10)2x~~-~~(2x^2-10x)}{2x\sqrt{x}}\implies \cfrac{dy}{dx}=\cfrac{8x^2-20x~~-~~(2x^2-10x)}{2x\sqrt{x}} \\\\\\ \cfrac{dy}{dx}=\cfrac{8x^2-20x~~-~~2x^2+10x}{2x\sqrt{x}} \implies \cfrac{dy}{dx}=\cfrac{6x^2-10x}{2x\sqrt{x}} \\\\\\ \cfrac{dy}{dx}=\cfrac{2x(3x-5)}{2x\sqrt{x}}\implies \cfrac{dy}{dx}=\cfrac{3x-5}{\sqrt{x}}

8 0
3 years ago
What is the slope of the line that passes throught the points (1,1) and (-1,-5)
Amiraneli [1.4K]

m = \dfrac{ \textrm{rise}}{\textrm{run}} = \dfrac{1 - -5 }{1 - -1} = \dfrac{6}{2} = 3


Slope is 3



6 0
3 years ago
Other questions:
  • Compare 6x10 to the 10 power to 3x10 to the 6 power
    7·2 answers
  • How many centimeters are in 35 inches? (1 in. = 2.54 cm)
    12·1 answer
  • -4x - 28y=56 4x + 14y=-28
    10·1 answer
  • 4.72n - 0.1 = 8 + 0.67n
    14·1 answer
  • In the triangle below, what is sin θ?
    12·2 answers
  • You play a game that involves drawing two numbers from a hat. There are 25 pieces of paper numbered 1 to 25 in the hat. Each num
    7·1 answer
  • The equation of line s is y=1/3x-3. The equation of line t is y=-x+5. the equations of line s and t form a system of equations.
    14·1 answer
  • Identify the transformations y = |x| ‐ 6
    12·1 answer
  • Solve 2w^2– 16w = 12W – 48 by factoring. Select the solution(s)
    14·1 answer
  • The following tile floor pattern is made of 36 square tiles.
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!