Answer:
First one is DC
Second one is AB.
Step-by-step explanation:
Just did them on edge.
Answer:
1) AD=BC(corresponding parts of congruent triangles)
2)The value of x and y are 65 ° and 77.5° respectively
Step-by-step explanation:
1)
Given : AD||BC
AC bisects BD
So, AE=EC and BE=ED
We need to prove AD = BC
In ΔAED and ΔBEC
AE=EC (Given)
( Vertically opposite angles)
BE=ED (Given)
So, ΔAED ≅ ΔBEC (By SAS)
So, AD=BC(corresponding parts of congruent triangles)
Hence Proved
2)
Refer the attached figure

In ΔDBC
BC=DC (Given)
So,
(Opposite angles of equal sides are equal)
So,
So,
(Angle sum property)
x+x+50=180
2x+50=180
2x=130
x=65
So,
Now,

So,
In ΔABD
AB = BD (Given)
So,
(Opposite angles of equal sides are equal)
So,
So,
(Angle Sum property)
y+y+25=180
2y=180-25
2y=155
y=77.5
So, The value of x and y are 65 ° and 77.5° respectively
Answer:
a is <u>5</u><u>3</u><u>.</u><u>8</u><u>°</u><u>,</u> and b is <u>3</u><u>6</u><u>.</u><u>2</u><u>°</u>
Step-by-step explanation:
Using sine trig rule:


Summation of angles of triangle:

-----------------------------
Formula
-----------------------------

-----------------------------
Find Area
-----------------------------



-----------------------------
Answer: Area = 88m²-----------------------------