I hope this is right but:
Let n=number of full time employees
260<=20+n*40
260-20<=N*40
240<=n*40
n>=240/40
n>=6 full time employees
which means he would have to hire at least 6 or more fully time employees
Though I'm not sure if the attached file is the graph you are looking for
Define
![{x} = \left[\begin{array}{ccc}x_{1}\\x_{2}\end{array}\right]](https://tex.z-dn.net/?f=%7Bx%7D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dx_%7B1%7D%5C%5Cx_%7B2%7D%5Cend%7Barray%7D%5Cright%5D%20)
Then
x₁ = cos(t) x₁(0) + sin(t) x₂(0)
x₂ = -sin(t) x₁(0) + cos(t) x₂(0)
Differentiate to obtain
x₁' = -sin(t) x₁(0) + cos(t) x₂(0)
x₂' = -cos(t) x₁(0) - sin(t) x₂(0)
That is,
![\dot{x} = \left[\begin{array}{ccc}-sin(t)&cos(t)\\-cos(t)&-sin(t)\end{array}\right] x(0)](https://tex.z-dn.net/?f=%5Cdot%7Bx%7D%20%3D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-sin%28t%29%26cos%28t%29%5C%5C-cos%28t%29%26-sin%28t%29%5Cend%7Barray%7D%5Cright%5D%20x%280%29)
Note that
![\left[\begin{array}{ccc}0&1\\-1&09\end{array}\right] \left[\begin{array}{ccc}cos(t)&sin(t)\\-sin(t)&cos(t)\end{array}\right] = \left[\begin{array}{ccc}-sin(t)&cos(t)\\-cos(t)&-sin(t)\end{array}\right]](https://tex.z-dn.net/?f=%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D0%261%5C%5C-1%2609%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Dcos%28t%29%26sin%28t%29%5C%5C-sin%28t%29%26cos%28t%29%5Cend%7Barray%7D%5Cright%5D%20%3D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D-sin%28t%29%26cos%28t%29%5C%5C-cos%28t%29%26-sin%28t%29%5Cend%7Barray%7D%5Cright%5D%20)
Therefore
There are 12 tickets needed. Just add all the 4's together.
Answer: 
Step-by-step explanation:
Since, The total number of student = 300
Out of which,
The number of students who are only in Maths = 120
And, The number of students who are only in Science = 50
While, the students who are not from any subject = 100
Hence, the number of student who are from both maths and science = Total student - Maths student (only) - science student (only) - None
= 300 - 120 - 50 - 100
= 30
That is, there are 30 students who are both from science and maths,
Thus, the probability of selecting one student who is both from maths and science = 30/300 = 1/10