1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
wel
3 years ago
12

Can you answer this plz

Mathematics
1 answer:
Sedaia [141]3 years ago
3 0
Go on google and then type in calculator for long division and you'll find the answers and the work
You might be interested in
What is the value of d?
blondinia [14]

Answer:

its 82 or 83 but u should use a protractor

ep-by-step explanation:

4 0
3 years ago
Read 2 more answers
25% of 68000 is how much
hjlf
1 \% =\frac{1}{100} \\ \\25 \% =\frac{25}{100}=0,25\\ \\25 \% \cdot 68000 = 0,25 \cdot 68000 =17 000


6 0
2 years ago
Read 2 more answers
PLEASE HELP I NEED THIS ASAP<br> Find the vertex of y=x^2-7x+4
Goshia [24]

Answer:

\mathrm{Minimum}\space\left(\frac{7}{2},\:-\frac{33}{4}\right)

Step-by-step explanation:

y=x^2-7x+4\\\mathrm{The\:vertex\:of\:an\:up-down\:facing\:parabola\:of\:the\:form}\:y=ax^2+bx+c\:\mathrm{is}\:x_v=-\frac{b}{2a}\\\mathrm{The\:parabola\:params\:are:}\\a=1,\:b=-7,\:c=4\\x_v=-\frac{b}{2a}\\x_v=-\frac{\left(-7\right)}{2\cdot \:1}\\\mathrm{Simplify}\\x_v=\frac{7}{2}\\\mathrm{Plug\:in}\:\:x_v=\frac{7}{2}\:\mathrm{to\:find\:the}\:y_v\:\mathrm{value}\\y_v=\left(\frac{7}{2}\right)^2-7\cdot \frac{7}{2}+4\\

\mathrm{Simplify\:}\left(\frac{7}{2}\right)^2-7\cdot \frac{7}{2}+4:\quad -\frac{33}{4}\\y_v=-\frac{33}{4}\\Therefore\:the\:parabola\:vertex\:is\\\left(\frac{7}{2},\:-\frac{33}{4}\right)\\\mathrm{If}\:a0,\:\mathrm{then\:the\:vertex\:is\:a\:minimum\:value}\\a=1\\\mathrm{Minimum}\space\left(\frac{7}{2},\:-\frac{33}{4}\right)

6 0
3 years ago
People that are smart in GEOMETRY then answer this PLZ
Viefleur [7K]

Answer:

11. Corresponding

12. Alternate Interior

13. Consecutive Interior

14. Corresponding

15. Alternate Exterior

16. Alternate Interior

8 0
3 years ago
<img src="https://tex.z-dn.net/?f=%5Clim_%7Bx%5Cto%20%5C%200%7D%20%5Cfrac%7B%5Csqrt%7Bcos2x%7D-%5Csqrt%5B3%5D%7Bcos3x%7D%20%7D%7
salantis [7]

Answer:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{1}{2}

General Formulas and Concepts:

<u>Calculus</u>

Limits

Limit Rule [Variable Direct Substitution]:                                                                     \displaystyle \lim_{x \to c} x = c

L'Hopital's Rule

Differentiation

  • Derivatives
  • Derivative Notation

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

We are given the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)}

When we directly plug in <em>x</em> = 0, we see that we would have an indeterminate form:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \frac{0}{0}

This tells us we need to use L'Hoptial's Rule. Let's differentiate the limit:

\displaystyle  \lim_{x \to 0} \frac{\sqrt{cos(2x)} - \sqrt[3]{cos(3x)}}{sin(x^2)} = \displaystyle  \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)}

Plugging in <em>x</em> = 0 again, we would get:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \frac{0}{0}

Since we reached another indeterminate form, let's apply L'Hoptial's Rule again:

\displaystyle \lim_{x \to 0} \frac{\frac{-sin(2x)}{\sqrt{cos(2x)}} + \frac{sin(3x)}{[cos(3x)]^{\frac{2}{3}}}}{2xcos(x^2)} = \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)}

Substitute in <em>x</em> = 0 once more:

\displaystyle \lim_{x \to 0} \frac{\frac{-[cos^2(2x) + 1]}{[cos(2x)]^{\frac{2}{3}}} + \frac{cos^2(3x) + 2}{[cos(3x)]^{\frac{5}{3}}}}{2cos(x^2) - 4x^2sin(x^2)} = \frac{1}{2}

And we have our final answer.

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Limits

6 0
2 years ago
Other questions:
  • Write 2,930,365 in expanded notation
    10·2 answers
  • Line L passes through the points (1, 5) and (5, 8). What is the slope of a line that is perpendicular to line L?
    6·1 answer
  • If I you have to mix a gallon of liquid solution 3 parts water and 1 part alcohol, how much alcohol do you mix in?
    14·2 answers
  • 1)A cabinet has 4 drawers.each drawer is 13 inches tall how tall is the cabinet
    6·1 answer
  • an athletic facility is building an indoor track. the track is composed of a rectangle and two semicircles, as shown. a) write a
    13·1 answer
  • Which choice is NOT a way to find 9 ÷ 4?
    14·1 answer
  • Can you help me please?
    7·1 answer
  • (3x+4y= 10)<br> (2x+3y=7)<br> Using elimination
    10·1 answer
  • keith and michelle went out to dinner. the total cost of the meal including the tip came $53.70. if the combined tip came out to
    5·1 answer
  • How do I solve this. Plz do step by step explanation so I can solve these kind of problems in the future. Thanks
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!