we know that
A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form y/x=k or y=kx
so
That means it's the equation of a line passing through the origin.
case a) and case d) are discarded because the line does not pass through the origin
<u>case b) we have</u>
for x=2 y=4
y/x=k-------> 4/2=2------> k=2
y=2x-------> in this case the value of y is two times the value of x
<u>case c) we have</u>
for x=4 y=2
y/x=k-------> 2/4=1/2------> k=(1/2)
y=(1/2)x-------> in this case the value of y is one-half of the value of x
therefore
the solution is the case c) see the attached figure
Answer:
Yes
Step-by-step explanation:
In any triangle, the sum of any two sides must be larger than the third side. To test this, we only actually need to pick the two shorter sides. In this case, the following inequality is true:

Answer:
3
1
2
Step-by-step explanation:
Step 1: Subtract 9
50.24 = 3.14x²
Step 2: Divide by 3.14
x² = 16
Step 3: Square root both sides
x = ±4
The answer is 12
Explanation: as you replace -2 it will give 4 so when u add 4 to 8 it equals to 12
Answer:
(x²-10x+33)/(-8) = y
Step-by-step explanation:
The distance between any point on a parabola from both its focus and directrix are the same.
Let's say we have a point (x,y) on the parabola. We can then say that using the distance formula,
is the distance between (x,y) and the focus. Similarly, the distance between (x,y) and the directrix is |y-1| (I use absolute value here because distance is always positive). We can find this equation by taking the shortest distance from the point to the line. Because the closest point to the line will be the same x value as the point itself, the distance is simply the distance between the y value of the point and the y value of the directrix.
Equating the two equations given, we have

square both sides to get
(x-5)²+(y+3)²=(y-1)²
expand the y components
(x-5)² + y²+6y+9 = y²-2y+1
subtract y²+6y+9 from both sides
(x-5)² = -8y - 8
expand the x components
x²-10x+25 = -8y - 8
add 8 to both sides to isolate the -8y
x²-10x+33 = -8y
divide both sides by -8 to isolate y
(x²-10x+33)/(-8) = y