We assume you mean

This is solved by writing 16 as a power of 4 and equating exponents.

2 = 3x - 7 . . . . . equate exponents
9 = 3x . . . . . add 7
3 = x . . . . . divide by 3
The solution is x = 3.
Answer:

Step-by-step explanation:
Given integral:

Solve by using <u>Integration by Substitution</u>
<u />
Substitute u for one of the functions of
to give a function that's easier to integrate.

Find the derivative of u and rewrite it so that
is on its own:


Use the substitution to change the limits of the integral from
-values to u-values:


Substitute everything into the original integral and solve:
![\begin{aligned}\displaystyle \int^{\pi}_{\frac{\pi}{2}}\dfrac{\cos \theta}{\sqrt{1+ \sin \theta}}\:\:d\theta & =\int^{1}_2}\dfrac{\cos \theta}{\sqrt{u}}\:\cdot \dfrac{1}{\cos \theta}\:\:du\\\\& =\int^{1}_{2}\dfrac{1}{\sqrt{u}} \:\:du \\\\& =\int^{1}_{2} u^{-\frac{1}{2}}\:\:du \\\\& = \left[ 2u^{\frac{1}{2}} \right]^{1}_{2}\\\\& = \left(2(1)^{\frac{1}{2}}\right)-\left(2(2)^{\frac{1}{2}}\right)\\\\& = 2-2\sqrt{2}\\\\& = -2(\sqrt{2}-1)\end{aligned}](https://tex.z-dn.net/?f=%5Cbegin%7Baligned%7D%5Cdisplaystyle%20%5Cint%5E%7B%5Cpi%7D_%7B%5Cfrac%7B%5Cpi%7D%7B2%7D%7D%5Cdfrac%7B%5Ccos%20%5Ctheta%7D%7B%5Csqrt%7B1%2B%20%5Csin%20%5Ctheta%7D%7D%5C%3A%5C%3Ad%5Ctheta%20%26%20%3D%5Cint%5E%7B1%7D_2%7D%5Cdfrac%7B%5Ccos%20%5Ctheta%7D%7B%5Csqrt%7Bu%7D%7D%5C%3A%5Ccdot%20%5Cdfrac%7B1%7D%7B%5Ccos%20%5Ctheta%7D%5C%3A%5C%3Adu%5C%5C%5C%5C%26%20%3D%5Cint%5E%7B1%7D_%7B2%7D%5Cdfrac%7B1%7D%7B%5Csqrt%7Bu%7D%7D%20%5C%3A%5C%3Adu%20%5C%5C%5C%5C%26%20%3D%5Cint%5E%7B1%7D_%7B2%7D%20u%5E%7B-%5Cfrac%7B1%7D%7B2%7D%7D%5C%3A%5C%3Adu%20%5C%5C%5C%5C%26%20%3D%20%5Cleft%5B%202u%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%20%5Cright%5D%5E%7B1%7D_%7B2%7D%5C%5C%5C%5C%26%20%3D%20%5Cleft%282%281%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5Cright%29-%5Cleft%282%282%29%5E%7B%5Cfrac%7B1%7D%7B2%7D%7D%5Cright%29%5C%5C%5C%5C%26%20%3D%202-2%5Csqrt%7B2%7D%5C%5C%5C%5C%26%20%3D%20-2%28%5Csqrt%7B2%7D-1%29%5Cend%7Baligned%7D)