In this problem, we can imagine that all the points
connect to form a triangle. The three point or vertices are located on the
pitcher mount, the home plate and where the outfielder catches the ball. So in
this case we are given two sides of the triangle and the angle in between the
two sides.
<span>With the following conditions, we can use the cosine law
to solve for the unknown 3rd side. The formula is:</span>
c^2 = a^2 + b^2 – 2 a b cos θ
Where,
a = 60.5 ft
b = 195 ft
θ = 32°
Substituting the given values:
c^2 = (60.5)^2 + (195)^2 – 2 (60.5) (195) cos 32
c^2 = 3660.25 + 38025 – 20009.7
c^2 = 21,675.56
c = 147.23 ft
<span>Therefore the outfielder throws the ball at a distance of
147.23 ft towards the home plate.</span>
Answer:
85 quarters and 135 dimes
Step-by-step explanation:
its basically a guess and check
formula - 0.25q + 0.10d = $34.75
0.25 x 85 + 0.10 x 135 = 34.75
A:40%
If you put 60 over 150 and x(percent of students) over 100 and cross multiply 100 and 60, you will get 6000. You then divide that by 150 which leaves you with 40 as x and 40 over 100 is 40%.
If a coordinate has a negative x-coordinate and its y-coordinate is positive, then the point is on the 2nd quadrant.
That means that the point is left of the origin and above it.