1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
swat32
3 years ago
6

Find the 6th term of the expansion of (2p - 3q)11. a. -7,185,024p4q7 c. -7,185p4q7 b. -7,185,024p6q5 d. -7,185p6q5

Mathematics
2 answers:
bezimeni [28]3 years ago
8 0
\bf (2p-3q)^{11}\implies 
\begin{array}{llll}
term&coefficient&value\\
-----&-----&-----\\
1&&(2p)^{11}(-3q)^0\\
2&+11&(2p)^{10}(-3q)^1\\
3&+55&(2p)^9(-3q)^2\\
4&+165&(2p)^8(-3q)^3\\
5&+330&(2p)^7(-3q)^4\\
6&+462&(2p)^6(-3q)^5
\end{array}

the coefficient for the first term is 1, the next is 11 and so on... now, notice, the elements of the binomial, the 1st element starts off with 11, and every term it goes down by 1, the 2nd element starts off at 0, and goes up by 1 in each term.

now, to get the next coefficient, you simply, "get the product of the current coefficient and the exponent of the 1st element, and divide that by the exponent of the 2nd element in the next term".

for example, how did we get 165 for the 4th term.... well  (55*9)/3

how did we get 462 for the 6th term? well (330*7)/5.

and then you can just expand it from there.
erica [24]3 years ago
7 0

Answer:  B.  -7185024p^6q^5

Step-by-step explanation:

The (r+1)th term in (a+b)^n is given by :

^nC_r(a)^{n-r}(b)^r

The given binomial : (2p - 3q)^{11}

For the 6th term, we put r=6-1=5 , we get

^{11}C_5(2p)^{11-5}(-3q)^5\\\\=\dfrac{11!}{5!(11-5)!}(2p)^6(-243q^5)\\\\=-dfrac{11\times10\times9\times8\times7\times6!}{6!5!}(64p^6)(243q^5)\\\\=-462\times(64p^6)(243q^5)\\\\=-7185024p^6q^5

Hence, the 6th term of the expansion of (2p - 3q)^{11} = -7185024p^6q^5

You might be interested in
The ratio of the angles in a triangle is 5:9:10. what is the measure of the largest angle?
Maksim231197 [3]

The measure of the largest angle is 75 degrees.

<h3>What is a triangle? </h3>

A triangle is a polygon with three sides and vertices. The sum of angles in a triangle is 180 degrees. Types of triangles include: right-angled triangle, isosceles triangle, equilateral triangle and scalene triangle.

<h3>What is the measure of the largest angle? </h3>

The measure of the largest angle = (largest ratio / sum of ratios) x 180

10 / 24 x 180 = 75 degrees

Please find attached an image of a triangle. To learn more about a triangle, please check: brainly.com/question/9329354

6 0
2 years ago
You run 1 3/4 miles each day. Your friend runs 4times as far as you do. How far does your friend run each day
Inga [223]
Just make 1 3/4 an improper fraction and multiply by 4:

1 3/4 = 7/4

7/4 * 4 = 7
7 0
3 years ago
Read 2 more answers
Solve for x mathematics
Bas_tet [7]

Answer:

x = 6

Step-by-step explanation:

9 / 6 = (2x - 6) / 4 (by the side splitter theorem)

6(2x - 6) = 36

12x - 36 = 36

12x= 72

x = 6

3 0
3 years ago
Read 2 more answers
13+(-19)=<br> Integer's<br> Best one is mark as brainlist
ANEK [815]

Answer:

-6

Step-by-step explanation:

13+(-19)  (distribute "+" sign into parentheses)

= 13-19

= -6

5 0
3 years ago
Factor the polynomial, x2 + 5x + 6
patriot [66]

Answer:

Choice b.

x^{2} + 5\, x + 6 = (x + 3)\, (x + 2).

Step-by-step explanation:

The highest power of the variable x in this polynomial is 2. In other words, this polynomial is quadratic.

It is thus possible to apply the quadratic formula to find the "roots" of this polynomial. (A root of a polynomial is a value of the variable that would set the polynomial to 0.)

After finding these roots, it would be possible to factorize this polynomial using the Factor Theorem.

Apply the quadratic formula to find the two roots that would set this quadratic polynomial to 0. The discriminant of this polynomial is (5^{2} - 4 \times 1 \times 6) = 1.

\begin{aligned}x_{1} &= \frac{-5 + \sqrt{1}}{2\times 1} \\ &= \frac{-5 + 1}{2} \\ &= -2\end{aligned}.

Similarly:

\begin{aligned}x_{2} &= \frac{-5 - \sqrt{1}}{2\times 1} \\ &= \frac{-5 - 1}{2} \\ &= -3\end{aligned}.

By the Factor Theorem, if x = x_{0} is a root of a polynomial, then (x - x_0) would be a factor of that polynomial. Note the minus sign between x and x_{0}.

  • The root x = -2 corresponds to the factor (x - (-2)), which simplifies to (x + 2).
  • The root x = -3 corresponds to the factor (x - (-3)), which simplifies to (x + 3).

Verify that (x + 2)\, (x + 3) indeed expands to the original polynomial:

\begin{aligned}& (x + 2)\, (x + 3) \\ =\; & x^{2} + 2\, x + 3\, x + 6 \\ =\; & x^{2} + 5\, x + 6\end{aligned}.

4 0
2 years ago
Other questions:
  • Pleas help ASAP.... Thank you
    9·2 answers
  • one extra large pizza serves about 4 people if you want to have a picnic with 26 people how many whole pizzas should you get ass
    9·1 answer
  • To make the paper bedding for his birds and rabbits, Maxwell uses a paper shredder and old newspapers. Maxwell’s paper shredder
    9·1 answer
  • Solve this ratio pls. 9 gallons to 28 quarts as a fraction in simplest form
    5·1 answer
  • 4y + 7(10 * 3.2) = 264<br> what is y?
    13·1 answer
  • What is the base of the triangle? A=36mm(2) H= 6mm B=?
    15·1 answer
  • What is 21 divided by something =7
    13·2 answers
  • What is 850% as a fraction in simplest form
    12·2 answers
  • Can anyone help me please:)
    10·2 answers
  • When Joseph first starts working at a grocery store, his hourly rate is $ 10 $10dollar sign, 10. For each year he works at the g
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!