Answer:
14
Divide
12 and 1 over 412
1
4
÷ 7 over 8
7
8
= 392 over 28
392
28
Step 1 of 2: Divide, sub-step a: Convert mixed number to improper fraction.
Convert mixed number to improper fraction
12 and 1 over 412
1
4
= ( 12 × 4 ) over 4
12 × 4
4
+ 1 over 4
1
4
= ( 48 + 1 ) over 4
48 + 1
4
= 49 over 4
49
4
Step 1 of 2: Divide, sub-step b: Divide.
Divide
49 over 4
49
4
÷ 7 over 8
7
8
= 49 over 4
49
4
× 8 over 7
8
7
= ( 49 × 8 ) over ( 4 × 7 )
49 × 8
4 × 7
= 392 over 28
392
28
To divide fractions, invert the second one (turn it upside-down), then multiply the numerators and denominators.Divide
12 and 1 over 412
1
4
÷ 7 over 8
7
8
= 392 over 28
392
28
Step 1 of 2: Divide, sub-step a: Convert mixed number to improper fraction.
Convert mixed number to improper fraction
12 and 1 over 412
1
4
= ( 12 × 4 ) over 4
12 × 4
4
+ 1 over 4
1
4
= ( 48 + 1 ) over 4
48 + 1
4
= 49 over 4
49
4
Step 1 of 2: Divide, sub-step b: Divide.
Divide
49 over 4
49
4
÷ 7 over 8
7
8
= 49 over 4
49
4
× 8 over 7
8
7
= ( 49 × 8 ) over ( 4 × 7 )
49 × 8
4 × 7
= 392 over 28
392
28
To divide fractions, invert the second one (turn it upside-down), then multiply the numerators and denominators.
F(-2) = 4x(-2) = -8;
g(f(-1))= g(-8) = 2x(-8) -1 = -16 - 1 = -17.
Answer: Check if numbers are prime. Composite numbers prime factorization (decomposing, breaking numbers down to prime factors). Inscribe them as a product of prime factors, in exponential notation.
answered
There are 50 deer in a particular forest. The population is increasing at a rate of 15% per year. Which exponential growth function represents
the number of deer y in that forest after x months? Round to the nearest thousandth.
1
SEE ANSWER
ADD ANSWER
+5 PTS
fanniemurphy is waiting for your help.
Add your answer and earn points.
Answer
1.0/5
1
dribeiro
Ace
697 answers
561.4K people helped
Answer:
The expression that represents the number of deer in the forest is
y(x) = 50*(1.013)^x
Step-by-step explanation:
Assuming that the number of deer is "y" and the number of months is "x", then after the first month the number of deer is:
y(1) = 50*(1+ 0.15/12) = 50*(1.0125) = 50.625
y(2) = y(1)*(1.0125) = y(0)*(1.0125)² =51.258
y(3) = y(2)*(1.0125) = y(0)*(1.0125)³ = 51.898
This keeps going as the time goes on, so we can model this growth with the equation:
y(x) = 50*(1 - 0.15/12)^(x)
y(x) = 50*(1.013)^x
The answer would be C. 72