"He starts both trains at the same time. Train A returns to its starting point every 12 seconds and Train B returns to its starting point every 9 seconds". Basically, what you need to do is find the least common multiple. The least common multiple of 12 and 9 is 36, so the least amount of time, in seconds, that both trains will arrive at the starting points at the same time is 36 seconds.
First you would have to find the third angle in the triangle which you would do by adding 63+61 and subtracting the resulting number from the total degrees in a triangle. From there, you would calculate x and y using the knowledge that angles on a line equal 180.
Answer:
13.44
Step-by-step explanation:
she is right...........
Answer:
7.21
Step-by-step explanation:
Given that:
P1=(-1,3) and P2=(5,-1)
Distance between two points :
d = Sqrt[(x2 - x1)² + (y2 - y1)²]
x1 = - 1 ; y1 = 3
x2 = 5 ; y2 = - 1
d = Sqrt[(5 - (-1))² + ((-1) - 3)²]
d = Sqrt[(5 + 1)² + (-1 - 3)²]
d = sqrt[(6)^2 + (-4)^2]
d = sqrt(36 + 16)
d = sqrt(52)
d = 7.21
Here it is
67^2 = 67*67 = 4489