Answer:
Complete the following statements. In general, 50% of the values in a data set lie at or below the median. 75% of the values in a data set lie at or below the third quartile (Q3). If a sample consists of 500 test scores, of them 0.5*500 = 250 would be at or below the median. If a sample consists of 500 test scores, of them 0.75*500 = 375 would be at or above the first quartile (Q1).
Step-by-step explanation:
The median separates the upper half from the lower half of a set. So 50% of the values in a data set lie at or below the median, and 50% lie at or above the median.
The first quartile(Q1) separates the lower 25% from the upper 75% of a set. So 25% of the values in a data set lie at or below the first quartile, and 75% of the values in a data set lie at or above the first quartile.
The third quartile(Q3) separates the lower 75% from the upper 25% of a set. So 75% of the values in a data set lie at or below the third quartile, and 25% of the values in a data set lie at or the third quartile.
The answer is:
Complete the following statements. In general, 50% of the values in a data set lie at or below the median. 75% of the values in a data set lie at or below the third quartile (Q3). If a sample consists of 500 test scores, of them 0.5*500 = 250 would be at or below the median. If a sample consists of 500 test scores, of them 0.75*500 = 375 would be at or above the first quartile (Q1).
Answer:
10-5
Step-by-step explanation:
As per the attached figure, right angled
has an inscribed circle whose center is
.
We have joined the incenter
to the vertices of the
.
Sides MD and DL are equal because we are given that 
Formula for <em>area</em> of a
As per the figure attached, we are given that side <em>a = 10.</em>
Using pythagoras theorem, we can easily calculate that side ML = 10
Points P,Q and R are at
on the sides ML, MD and DL respectively so IQ, IR and IP are heights of
MIL,
MID and
DIL.
Also,


So, radius of circle = 
0=-10
So no value
This is the answer to this question