Let the regular price be X
x\98.60 x 100=29%
100x\98.60=29(multiply both sides by 98.60 to remove the denominator
100x=2859.4(divide both sides by 100
x=28.594
regular price=$28.594
The answer to 17892•36 is 644,112
Answer:
9000 milligrams
Step-by-step explanation:
One gram is the <em>equivalent of 1000 milligrams</em>.
So, <em>9 grams is 9*1000 milligrams</em>, which is 9000 milligrams.
Answer : 0.0129
Step-by-step explanation:
Given : Based on FAA estimates the average age of the fleets of the 10 largest U.S. commercial passenger carriers is
years and standard deviation is
years.
Sample size : 
Let X be the random variable that represents the age of fleets.
We assume that the ages of the fleets of the 10 largest U.S. commercial passenger carriers are normally distributed.
For z-score,

For x=14

By using the standard normal distribution table , the probability that the average age of these 40 airplanes is at least 14 years old will be :-

Hence, the required probability = 0.0129
Answer:
Step-by-step explanation: