1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
N76 [4]
3 years ago
10

Please help! 1. n^6/n^2 a. 1/n^4 b. n^4 c. n^8 d. n12

Mathematics
1 answer:
Klio2033 [76]3 years ago
5 0
Simplify the following:n^6/n^2
Combine powers. n^6/n^2 = n^(6 - 2):n^(6 - 2)
6 - 2 = 4:Answer:  n^4 thus b: is you Answer
You might be interested in
A 90 ° angle is divided into 2 angles. Find the size of the angles. 3x+15 and 2x+25
fenix001 [56]

The two angles are 45 degrees.

Step-by-step explanation:

You are just halfing the 90 degree angle, so all you have to do is divide 90 by two, and you have 45.

3 0
3 years ago
Find the quotient 3/5 divided by 8
Black_prince [1.1K]

Answer:

A.

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
What is the surface area of this wedge ?
Bess [88]

Answer: 84 ft^2  

Step-by-step explanation:

The whole prism can be divided into  5 surfaces.

Two triangles and 3 rectangles.

 Find the area of each of the 5 shapes and add them together.

The triangle has a  base of 4 and a height of  3.

Area of triangle 1:    A= 4*3 * 1/2  

                               A = 6  

Area of triangle 2:     A = 4*3 * 1/2

                                   A = 6

Area of rectangle 1 :   A= 4*6

                                    A = 24

Area of rectangle 2;   A = 3*6  

                                     A = 18

Area of rectangle 3:    A= 5 *6  

                                      A = 30

Now add the areas together

    6 + 6 + 24 + 18 + 30 + =  84 ft^2

7 0
3 years ago
Read 2 more answers
about 3/5 of the students at Roosevelt Elementary School live within 1 mile of the school what percent of students live within 1
skelet666 [1.2K]
60% of the school lives within 1 mile of Roosevelt Elementary.
8 0
3 years ago
Read 2 more answers
2,17,82,257,626,1297 next one please ?​
In-s [12.5K]

The easy thing to do is notice that 1^4 = 1, 2^4 = 16, 3^4 = 81, and so on, so the sequence follows the rule n^4+1. The next number would then be fourth power of 7 plus 1, or 2402.

And the harder way: Denote the <em>n</em>-th term in this sequence by a_n, and denote the given sequence by \{a_n\}_{n\ge1}.

Let b_n denote the <em>n</em>-th term in the sequence of forward differences of \{a_n\}, defined by

b_n=a_{n+1}-a_n

for <em>n</em> ≥ 1. That is, \{b_n\} is the sequence with

b_1=a_2-a_1=17-2=15

b_2=a_3-a_2=82-17=65

b_3=a_4-a_3=175

b_4=a_5-a_4=369

b_5=a_6-a_5=671

and so on.

Next, let c_n denote the <em>n</em>-th term of the differences of \{b_n\}, i.e. for <em>n</em> ≥ 1,

c_n=b_{n+1}-b_n

so that

c_1=b_2-b_1=65-15=50

c_2=110

c_3=194

c_4=302

etc.

Again: let d_n denote the <em>n</em>-th difference of \{c_n\}:

d_n=c_{n+1}-c_n

d_1=c_2-c_1=60

d_2=84

d_3=108

etc.

One more time: let e_n denote the <em>n</em>-th difference of \{d_n\}:

e_n=d_{n+1}-d_n

e_1=d_2-d_1=24

e_2=24

etc.

The fact that these last differences are constant is a good sign that e_n=24 for all <em>n</em> ≥ 1. Assuming this, we would see that \{d_n\} is an arithmetic sequence given recursively by

\begin{cases}d_1=60\\d_{n+1}=d_n+24&\text{for }n>1\end{cases}

and we can easily find the explicit rule:

d_2=d_1+24

d_3=d_2+24=d_1+24\cdot2

d_4=d_3+24=d_1+24\cdot3

and so on, up to

d_n=d_1+24(n-1)

d_n=24n+36

Use the same strategy to find a closed form for \{c_n\}, then for \{b_n\}, and finally \{a_n\}.

\begin{cases}c_1=50\\c_{n+1}=c_n+24n+36&\text{for }n>1\end{cases}

c_2=c_1+24\cdot1+36

c_3=c_2+24\cdot2+36=c_1+24(1+2)+36\cdot2

c_4=c_3+24\cdot3+36=c_1+24(1+2+3)+36\cdot3

and so on, up to

c_n=c_1+24(1+2+3+\cdots+(n-1))+36(n-1)

Recall the formula for the sum of consecutive integers:

1+2+3+\cdots+n=\displaystyle\sum_{k=1}^nk=\frac{n(n+1)}2

\implies c_n=c_1+\dfrac{24(n-1)n}2+36(n-1)

\implies c_n=12n^2+24n+14

\begin{cases}b_1=15\\b_{n+1}=b_n+12n^2+24n+14&\text{for }n>1\end{cases}

b_2=b_1+12\cdot1^2+24\cdot1+14

b_3=b_2+12\cdot2^2+24\cdot2+14=b_1+12(1^2+2^2)+24(1+2)+14\cdot2

b_4=b_3+12\cdot3^2+24\cdot3+14=b_1+12(1^2+2^2+3^2)+24(1+2+3)+14\cdot3

and so on, up to

b_n=b_1+12(1^2+2^2+3^2+\cdots+(n-1)^2)+24(1+2+3+\cdots+(n-1))+14(n-1)

Recall the formula for the sum of squares of consecutive integers:

1^2+2^2+3^2+\cdots+n^2=\displaystyle\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}6

\implies b_n=15+\dfrac{12(n-1)n(2(n-1)+1)}6+\dfrac{24(n-1)n}2+14(n-1)

\implies b_n=4n^3+6n^2+4n+1

\begin{cases}a_1=2\\a_{n+1}=a_n+4n^3+6n^2+4n+1&\text{for }n>1\end{cases}

a_2=a_1+4\cdot1^3+6\cdot1^2+4\cdot1+1

a_3=a_2+4(1^3+2^3)+6(1^2+2^2)+4(1+2)+1\cdot2

a_4=a_3+4(1^3+2^3+3^3)+6(1^2+2^2+3^2)+4(1+2+3)+1\cdot3

\implies a_n=a_1+4\displaystyle\sum_{k=1}^3k^3+6\sum_{k=1}^3k^2+4\sum_{k=1}^3k+\sum_{k=1}^{n-1}1

\displaystyle\sum_{k=1}^nk^3=\frac{n^2(n+1)^2}4

\implies a_n=2+\dfrac{4(n-1)^2n^2}4+\dfrac{6(n-1)n(2n)}6+\dfrac{4(n-1)n}2+(n-1)

\implies a_n=n^4+1

4 0
3 years ago
Other questions:
  • The positive co-terminal angle for 3pi/4 is
    9·1 answer
  • Need help in math.!!!!
    10·1 answer
  • Math question down below
    9·2 answers
  • A recipe calls for 3 cups of sugar and 9 cups of water if the recipe is reduced how many cups of water should be used with two c
    10·1 answer
  • LCM or 9/50 and 11/20
    9·1 answer
  • Can someone help me pls
    12·1 answer
  • A standard container measures 2.4 m by 2.4 m by 6 m.
    10·1 answer
  • What is an equation equivalent to 5x-25
    10·2 answers
  • Question Help
    12·2 answers
  • Helpppp hurry and no links please
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!