Answer:
That is true because squares are also closed for multiplication.
Example:
y = 2x + 1 is a linear equation:
- When x increases, y increases twice as fast, so we need 2x
- When x is 0, y is already 1. So +1 is also needed
- And so: y = 2x + 1
Here are some example values:
x y = 2x + 1
-1 y = 2 × (-1) + 1 = -1
0 y = 2 × 0 + 1 = 1
1 y = 2 × 1 + 1 = 3
2 y = 2 × 2 + 1 = 5
-----------------------------------------------------------------------------
Each solution is a pair of numbers (x,y) that make the equation true. Solving a linear equation usually means finding the value of y for a given value of x. If the equation is already in the form y = mx + b, with x and y variables and m and b rational numbers, then the equation can be solved in algebraic terms.
i wish you the best <33
Answer:
When 324 belts have been produced, the average cost is changing at -28 dollars for each additional belt.
Step-by-step explanation:
The cost of producing x belts is given by:

Find the rate at which average cost is changing when 324 belts have been produced.
This is
. So



So the correct answer is:
When 324 belts have been produced, the average cost is changing at -28 dollars for each additional belt.
30 minutes is half of an hour so it would be 50%.
So you need to come up with a perfect square that works for the x coefficients.
like.. (2x + 2)^2
(2x+2)(2x+2) = 4x^2 + 8x + 4
Compare this to the equation given. Our perfect square has +4 instead of +23. The difference is: 23 - 4 = 19
I'm going to assume the given equation equals zero..
So, If we add subtract 19 from both sides of the equation we get the perfect square.
4x^2 + 8x + 23 - 19 = 0 - 19
4x^2 + 8x + 4 = - 19
complete the square and move 19 over..
(2x+2)^2 + 19 = 0
factor the 2 out becomes 2^2 = 4
ANSWER: 4(x+1)^2 + 19 = 0
for a short cut, the standard equation
ax^2 + bx + c = 0 becomes a(x - h)^2 + k = 0
Where "a, b, c" are the same and ..
h = -b/(2a)
k = c - b^2/(4a)
Vertex = (h, k)
this will be a minimum point when "a" is positive upward facing parabola and a maximum point when "a" is negative downward facing parabola.